Publications by authors named "Fatemah Alharthi"

Understanding alterations in structural disorders in tissue/cells/building blocks, such as DNA/chromatin in the human brain, at the nano to submicron level provides us with efficient biomarkers for Alzheimer's detection. Here, we report a dual photonics technique to detect nano- to submicron-scale alterations in brain tissues/cells and DNA/chromatin due to the early to late progression of Alzheimer's disease in humans. Using a recently developed mesoscopic light transport technique, fine-focused nano-sensitive partial wave spectroscopy (PWS), we measure the degree of structural disorder in tissues.

View Article and Find Full Text PDF

Significance: Light is a good probe for studying the nanoscale-level structural or molecular-specific structural properties of brain cells/tissue due to stress, alcohol, or any other abnormalities. Chronic alcoholism during pregnancy, i.e.

View Article and Find Full Text PDF

Molecular specific photonics localization method, the inverse participation ratio (IPR) technique, is a powerful procedure to probe the nano- to submicron scales structural alterations in cells/tissues in their abnormalities due to chronic alcoholism using confocal imaging. Chronic alcoholism introduces abnormalities in brain cells/tissue at the nanoscale level that results in behavioural and psychological disorders which are not well understood. On the other hand, probiotics such as Lactobacillus plantarum enhances brain functions in chronic alcoholism.

View Article and Find Full Text PDF

A mesoscopic physics-based optical imaging technique, partial wave spectroscopy (PWS), has been used for the detection of cancer by probing nanoscale structural alterations in cells/tissue. The development of drug-resistant cancer cells/tissues during chemotherapy is a major challenge in cancer treatment. In this paper, using a mouse model and PWS, the structural properties of tumor tissue grown in 3D structures by xenografting drug-resistant and drug-sensitive human prostate cancer cells having 2D structures, are studied.

View Article and Find Full Text PDF