The three-dimensional architecture of the bacterial chromosome is intertwined with genome processes such as transcription and replication. Conspicuously so, that the structure of the chromosome permits accurate prediction of active genome processes. Although appreciation of this interplay has developed rapidly in the past two decades, our understanding of this subject is still in its infancy, with research primarily focusing on how the process of transcription regulates and is regulated by chromosome structure.
View Article and Find Full Text PDFDNA-protein interactions occur in biological processes such as genome replication, gene transcription, DNA repair, and chromatin compaction and organization. Mapping the distribution of the DNA-bound proteins on the chromosome is essential for understanding their associated biological process. Chromatin immunoprecipitation (ChIP) involves the antibody-mediated enrichment of DNA fragments bound by a target protein and has become one of the most powerful techniques for exploring the distribution of proteins on the chromosome.
View Article and Find Full Text PDFNucleoid associated proteins (NAPs) maintain the architecture of bacterial chromosomes and regulate gene expression. Thus, their role as transcription factors may involve three-dimensional chromosome re-organisation. While this model is supported by in vitro studies, direct in vivo evidence is lacking.
View Article and Find Full Text PDFNucleoid-associated proteins (NAPs) are architectural proteins of the bacterial chromosome and transcription factors that dynamically organise the chromosome and regulate gene expression in response to physicochemical environmental signals. While the architectural and regulatory functions of NAPs have been verified independently, the coupling between these functions in vivo has not been conclusively proven. Here we describe a model NAP - histone-like nucleoid structuring protein (H-NS) - as a coupled sensor-effector that directly regulates gene expression by chromatin re-modelling in response to physicochemical environmental signals.
View Article and Find Full Text PDFThe three-dimensional structure of the chromosome is encoded within its sequence and regulates activities such as replication and transcription. This necessitates the study of the spatial organization of the chromosome in relation to the underlying sequence. Chromosome conformation capture (3C) techniques are proximity ligation-based approaches that simplify the three-dimensional architecture of the chromosome into a one-dimensional library of hybrid ligation junctions.
View Article and Find Full Text PDFThe interplay between three-dimensional chromosome organisation and genomic processes such as replication and transcription necessitates in vivo studies of chromosome dynamics. Fluorescent organic dyes are often used for chromosome labelling in vivo. The mode of binding of these dyes to DNA cause its distortion, elongation, and partial unwinding.
View Article and Find Full Text PDFJCVI-syn3A is a genetically minimal bacterial cell, consisting of 493 genes and only a single 543 kbp circular chromosome. Syn3A's genome and physical size are approximately one-tenth those of the model bacterial organism 's, and the corresponding reduction in complexity and scale provides a unique opportunity for whole-cell modeling. Previous work established genome-scale gene essentiality and proteomics data along with its essential metabolic network and a kinetic model of genetic information processing.
View Article and Find Full Text PDFBacterial chromosomes are folded to compact DNA and facilitate cellular processes. Studying model bacteria has revealed aspects of chromosome folding that are applicable to many species. Primarily controlled by nucleoid-associated proteins, chromosome folding is hierarchical, from large-scale macrodomains to smaller-scale structures that influence DNA transactions, including replication and transcription.
View Article and Find Full Text PDFThe spatial organization of genomes is based on their hierarchical compartmentalization in topological domains. There is growing evidence that bacterial genomes are organized into insulated domains similar to the Topologically Associating Domains (TADs) detected in eukaryotic cells. Chromosome conformation capture (3C) technologies are used to analyze in vivo DNA proximity based on ligation of distal DNA segments crossed-linked by bridging proteins.
View Article and Find Full Text PDF