In this paper, a method for predicting residual film content in the cotton field plough layer based on UAV imaging and deep learning was proposed to solve the issues of high labour intensity, low efficiency, and high cost of traditional methods for residual film content monitoring. Images of residual film on soil surface in the cotton field were collected by UAV, and residual film content in the plough layer was obtained by manual sampling. Based on the three deep learning frameworks of LinkNet, FCN, and DeepLabv3, a model for segmenting residual film from the cotton field image was built.
View Article and Find Full Text PDFTo accurately evaluate residual plastic film pollution in pre-sowing cotton fields, a method based on modified U-Net model was proposed in this research. Images of pre-sowing cotton fields were collected using UAV imaging from different heights under different weather conditions. Residual films were manually labelled, and the degree of residual film pollution was defined based on the residual film coverage rate.
View Article and Find Full Text PDF