Background: Changes in the neuroendocrine regulation of gonadal function, via altered hypothalamic sensitivity to peripheral hormones, are known to schedule reproductive maturation in the young and influence reproductive senescence. Estrogen (E) is a key hormone in this process. While changes in circulating levels of E over the life span are well documented, less is known about the corresponding changes in E sensitivity over the lifespan, especially during middle-age, when the initial signs of reproductive senescence emerge.
View Article and Find Full Text PDFLife-long calorie restriction (CR) remains the most robust and reliable means of extending life span in mammals. Among the several theories to explain CR actions, one variant of the neuroendocrine theories of aging postulates that changing hypothalamic sensitivity to endocrine feedback is the clock that times phenotypic change over the life span. If the feedback sensitivity hypothesis is correct, CR animals should display a significantly different pattern of hormone-sensitive cell density and distribution in the hypothalamus.
View Article and Find Full Text PDFThe phenome represents the observable properties of an organism that have developed under the continued influences of both genome and environmental factors. Phenotypic properties are expressed through the functions of cells, organs and body systems that operate optimally, close to equilibrium. In complex organisms, maintenance of the equilibrium is achieved by the interplay of several regulatory mechanisms.
View Article and Find Full Text PDF