Land subsidence is a huge challenge that land and water resource managers are still facing. Radar datasets revolutionize the way and give us the ability to provide information about it, thanks to their low cost. But identifying the most important drivers need for the modeling process.
View Article and Find Full Text PDFConsidering the effects of dust on human health, environment, agriculture, and transportation, it is necessary to investigate dust emissions susceptibility. This study aimed to study the capability of different machine learning models in analyzing land susceptibility to dust emissions. At first, the dust-source areas were identified by examining the frequency of occurrence (FOO) of dusty days using the aerosol optical depth (AOD) of the MODIS sensor from 2000 to 2020 and field surveys.
View Article and Find Full Text PDFGroundwater pollution susceptibility mapping using parsimonious approaches with limited data is of utmost importance for water resource and health planning, especially in data-scarce regions. Current research assesses groundwater nitrate susceptibility by considering the various combination of explanatory variables. In this study, the novel machine learning models of weighted subspace random forest (WSRF) and generalized additive model using LOESS (GAMLOESS) are applied, and the results are compared with well-known machine learning models of K-nearest neighbors (KKNN) and random forest (RF).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2021
Among natural disasters, flood is increasingly recognized as a serious worldwide concern that causes the most damages in parts of agriculture, fishery, housing, and infrastructure and strongly affects economic and social activities. Universally, there is a requirement to increase our conception of flood vulnerability and to outstretch methods and tools to assess it. Spatial analysis of flood vulnerability is part of non-structural measures to prevent and reduce flood destructive effects.
View Article and Find Full Text PDFSnow avalanche is among the most harmful natural hazards with major socioeconomic and environmental destruction in the cold and mountainous regions. The devastating propagation and accumulation of the snow avalanche debris and mass wasting of surface rocks and vegetation particles threaten human life, transportation networks, built environments, ecosystems, and water resources. Susceptibility assessment of snow avalanche hazardous areas is of utmost importance for mitigation and development of land-use policies.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2021
Increasing groundwater salinity has recently raised severe environmental and health concerns around the world. Advancement of the novel methods for spatial salinity modeling and prediction would be essential for effective management of the resources and planning mitigation policies. The current research presents the application of machine learning (ML) models in groundwater salinity mapping based on the dichotomous predictions.
View Article and Find Full Text PDFFlash-floods are increasingly recognized as a frequent natural hazard worldwide. Iran has been among the mostdevastated regions affected by the major floods. While the temporal flash-flood forecasting models are mainly developed for warning systems, the models for assessing hazardous areas can greatly contribute to adaptation and mitigation policy-making and disaster risk reduction.
View Article and Find Full Text PDFEarth fissures are the cracks on the surface of the earth mainly formed in the arid and the semi-arid basins. The excessive withdrawal of groundwater, as well as the other underground natural resources, has been introduced as the significant causing of land subsidence and potentially, the earth fissuring. Fissuring is rapidly turning into the nations' major disasters which are responsible for significant economic, social, and environmental damages with devastating consequences.
View Article and Find Full Text PDFThis study aimed to develop a novel framework for risk assessment of nitrate groundwater contamination by integrating chemical and statistical analysis for an arid region. A standard method was applied for assessing the vulnerability of groundwater to nitrate pollution in Lenjanat plain, Iran. Nitrate concentration were collected from 102 wells of the plain and used to provide pollution occurrence and probability maps.
View Article and Find Full Text PDFFloods, as a catastrophic phenomenon, have a profound impact on ecosystems and human life. Modeling flood susceptibility in watersheds and reducing the damages caused by flooding is an important component of environmental and water management. The current study employs two new algorithms for the first time in flood susceptibility analysis, namely multivariate discriminant analysis (MDA), and classification and regression trees (CART), incorporated with a widely used algorithm, the support vector machine (SVM), to create a flood susceptibility map using an ensemble modeling approach.
View Article and Find Full Text PDFSuspended sediment load (SSL) modelling is an important issue in integrated environmental and water resources management, as sediment affects water quality and aquatic habitats. Although classification and regression tree (CART) algorithms have been applied successfully to ecological and geomorphological modelling, their applicability to SSL estimation in rivers has not yet been investigated. In this study, we evaluated use of a CART model to estimate SSL based on hydro-meteorological data.
View Article and Find Full Text PDF