In this study, MoS/NiFeO/MIL-101(Fe) nanocomposite was synthesized by hydrothermal method and used as an adsorbent for the elimination of organic dyes and some antibiotic drugs in aqueous solutions. The synthesized nanocomposite underwent characterization through different techniques, including scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), zeta potential analysis, vibrating sample magnetometry (VSM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). These results demonstrated the successful insertion of MoSwithin the cavities of MIL-101(Fe).
View Article and Find Full Text PDFIn the recent years, perovskite oxides are gaining an increasing amount of attention owing to their unique traits such as tunable electronic structures, flexible composition, and eco-friendly properties. In contrast, their catalytic performance is not satisfactory, which hinders real wastewater remediation. To overcome this shortcoming, various strategies are developed to design new perovskite oxide-based materials to enhance their catalytic activities in advanced oxidation process (AOPs).
View Article and Find Full Text PDFIn this work, we synthesized and reported gold nanoparticles (Au NPs) with Eryngium thyrsoideum Boiss plant extract for first time. The plant extract has important effect as reducing and stabilizing agent for preparation of Au nanoparticles. The synthesized gold nanoparticles were characterized with FT-IR, UV-vis, XRD, SEM, and TEM analyses.
View Article and Find Full Text PDFIn the present study, silver nanoparticles (1) were synthesized by green method using Eryngium campestre Boiss aqueous extract and silver nanoparticles (2) were synthesized with chemical method. The silver nanoparticles (1) and (2) were characterized with FT-IR, UV-Vis, XRD, EDX, SEM, and TEM analyses. The effects of silver nanoparticles (1) and (2) were investigated on glucose, hematology, and blood biochemical parameters in alloxan- induced diabetes type 1 model rats.
View Article and Find Full Text PDFIn this paper, Keggin-type heteropoly acids HPMoO (PMo), HPWO (PW) and HSiWO (SiW) were successfully supported on silica-coated perovskite type LaMnO nanoparticles by a simple acid-base reaction. These novel hybrid nanomaterials (denoted as LaMnO@SiO/PMo (1), LaMnO@SiO/PW (2), and LaMnO@SiO/SiW (3)) were characterized by means of FT-IR, PXRD, inductively coupled plasma (ICP) spectrometry, SEM, EDX, TEM and BET surface area analysis. Furthermore, the adsorption abilities of 1-3 were tested towards cationic methylene blue (MB) and anionic methyl orange (MO) dyes.
View Article and Find Full Text PDF