Publications by authors named "Farzaneh Bayat"

By preparing colloidal crystals with random missing scatterers, crystals are created where disorder is embodied as vacancies in an otherwise perfect lattice. In this special system, there is a critical defect concentration where light propagation undergoes a transition from an all but perfect reflector (for the spectral range defined by the Bragg condition), to a metamaterial exhibiting an enhanced transmission phenomenon. It is shown that this behavior can be phenomenologically described in terms of Fano-like resonances.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most commonly diagnosed cancers and the second leading cause of cancer mortality among women around the world. The purpose of this study is to present a non-labeled liquid crystal (LC) biosensor, based on the inherent feature of nematic LCs, for the evaluation of BC using the human epidermal growth factor receptor-2 (HER-2) biomarker. The mechanism of this sensing is supported by surface modification with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) encouraging the long alkyl chains that induce a homeotropic orientation of the LC molecules at the interface.

View Article and Find Full Text PDF

This paper investigates the optical properties of the two plasma photonic crystal structures. The first structure contains periodic thin layers of plasma with heterogeneous densities, and in the second one, the heterogeneous plasma layer has been applied as the defect layer of a one-dimensional photonic crystal. Herein, the plasma density distribution function is considered a continuous function of plasma critical density as follows: =(→), where =/ represents the critical density of the plasma and (→) indicates the plasma density distribution function.

View Article and Find Full Text PDF

In this paper, it is shown that the sequence of chemical etching of the template and annealing has a significant effect on the shape and spectrum of the nano-metal arrays fabricated by nanosphere lithography (NSL). Higher nanoparticles with sharp edges are fabricated as a consequence of annealing the metal coated template, which is a 2d colloidal crystal, before chemical etching. Consequently, the absorption spectra of the fabricated sample become much sharper, in comparison with the one that is fabricated with the reversed order and also a shift is observed in the peak wavelength.

View Article and Find Full Text PDF