Publications by authors named "Farzaneh Atrian"

Alterations in the rate and accuracy of messenger RNA (mRNA) translation are associated with aging and several neurodegenerative disorders, including Alzheimer's disease and related tauopathies. We previously reported that error-containing RNA that are normally cleared via nonsense-mediated mRNA decay (NMD), a key RNA surveillance mechanism, are translated in the adult brain of a Drosophila model of tauopathy. In the current study, we find that newly-synthesized peptides and translation machinery accumulate within nuclear envelope invaginations that occur as a consequence of tau pathology, and that the rate of mRNA translation is globally elevated in early stages of disease in adult brains of Drosophila models of tauopathy.

View Article and Find Full Text PDF

Circular RNAs (circRNAs), covalently closed RNA molecules that form due to back-splicing of RNA transcripts, have recently been implicated in Alzheimer's disease and related tauopathies. circRNAs are regulated by N-methyladenosine (mA) RNA methylation, can serve as "sponges" for proteins and RNAs, and can be translated into protein via a cap-independent mechanism. Mechanisms underlying circRNA dysregulation in tauopathies and causal relationships between circRNA and neurodegeneration are currently unknown.

View Article and Find Full Text PDF

Senescent cells contribute to pathology and dysfunction in animal models. Their sparse distribution and heterogenous phenotype have presented challenges for detecting them in human tissues. We developed a senescence eigengene approach to identify these rare cells within large, diverse populations of postmortem human brain cells.

View Article and Find Full Text PDF

With the increase in knowledge on the importance of the tumor microenvironment, cell culture models of cancers can be adapted to better recapitulate physiologically relevant situations. Three main microenvironmental factors influence tumor phenotype: the biochemical components that stimulate cells, the fibrous molecules that influence the stiffness of the extracellular matrix, and noncancerous cells like epithelial cells, fibroblasts, endothelial cells, and immune cells. Here we present methods for the culture of carcinomas in the presence of a matrix of specific stiffness, and for the coculture of tumors and fibroblasts as well as epithelial cells in the presence of matrix.

View Article and Find Full Text PDF

Oxidative stress-mediated cancer progression depends on exposure to reactive oxygen species (ROS) in the extracellular matrix (ECM). To study the impact of ROS levels on preinvasive breast cancer cells as a function of ECM characteristics, we created a gradient-on-a-chip in which HO progressively mixes with the cell culture medium within connected microchannels and diffuses upward into the ECM of the open cell culture window. The device utilizes a paper-based microfluidic bifurcating mixer insert to prevent leakage and favor an even fluid distribution.

View Article and Find Full Text PDF

The epigenetic nature of cancer encourages the development of inhibitors of epigenetic pathways. Yet, the clinical use for solid tumors of approved epigenetic drugs is meager. We argue that this situation might improve upon understanding the coinfluence between epigenetic pathways and tissue architecture.

View Article and Find Full Text PDF