Publications by authors named "Farzaneh Arefi-Khonsari"

Article Synopsis
  • Atmospheric plasma jets using air or nitrogen are used for industrial surface treatments, improving properties like wettability and enabling thin film deposition.
  • The heat flux during these treatments can reach 100-300 W/cm, resulting in significant temperature increases that potentially alter the surface characteristics of treated polymer substrates.
  • The study analyzes phase transitions in glass fiber-reinforced polymers (PPS and PPA) under plasma treatments and highlights the importance of understanding thermal effects on material properties for effective surface engineering.
View Article and Find Full Text PDF

Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.

View Article and Find Full Text PDF

Background: It may be impossible to perform cancer surgery with free margins in the presence of an unresectable structure. Local drug treatment after surgery has been proposed to increase the rate of tumor control.

Methods: Multi-nanolayers (10-330 nm) were generated by a low-pressure (375mTorr) inductively coupled plasma (13.

View Article and Find Full Text PDF

A low pressure ICP plasma setup was utilized to deposit thin organic barrier coatings on various substrates to fabricate DDS with encapsulated Carboplatin as a drug and Methylene Blue as a drug model. Choice of the substrates and optimal plasma parameters were discussed for the fabrication of DDS with required characteristics. Prepared thin films were analysed by FTIR, SEM, and the barrier properties were studied by measuring drug concentration released into the medium by UV-VIS and ICP-MS techniques.

View Article and Find Full Text PDF

Enhanced TiO nanorods (TNRs) with partially reduced graphene oxide (RGO) (designated as GT) were prepared for degrading aqueous hazardous pollutants. The degree of RGO oxidation had an important role in affecting the photoelectronic and photocatalytic activities of GT composites. The study examined the impact of the degree of RGO oxidation on the photocatalytic activities.

View Article and Find Full Text PDF

In order to obtain a durable cost-effective membrane for membrane distillation (MD) process, flat sheet polyethersulfone (PES) membranes were modified by an atmospheric pressure nonequilibrium plasma generated using a dielectric barrier discharge in a mixture of argon and hexamethyldisiloxane as the organosilicon precursor. The surface properties of the plasma-modified membranes were characterized by water contact angle (CA), liquid entry pressure, X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water CA of the membrane was increased from 64° to 104° by depositing a Si(CH)-rich thin layer.

View Article and Find Full Text PDF

A low pressure plasma process based on plasma deposition has been used to develop a drug delivery strategy. In this study, a drug delivery system based on different layers of plasma co-polymerized Poly ε-caprolactone-Polyethylene glycol (PCL-PEG) co-polymers was deposited on biocompatible substrates. Cis-platinum (118 μgm/cm2) was used as an anti-cancer drug and incorporated for local delivery of the chemotherapeutic agent.

View Article and Find Full Text PDF

In this work, a simple and rapid method was used to functionalize carbon electrode in order to efficiently immobilize laccase for biosensor application. A stable allylamine coating was deposited using a low pressure inductively excited RF tubular plasma reactor under mild plasma conditions (low plasma power (10 W), few minutes) to generate high density amine groups (N/C ratio up to 0.18) on rough carbon surface electrodes.

View Article and Find Full Text PDF

For the first time, a fast and versatile technique, an atmospheric pressure plasma jet (APPJ), has been used to functionalise graphite carbon electrodes for biofuel cell applications. The bioelectrode was functionalized by an atmospheric pressure plasma jet (APPJ) system using air, oxygen (O2) and nitrogen (N2) plasmas applied for only a few seconds. XPS analysis showed that carboxylic groups were created on the carbon substrates using both air and O2 plasmas, while mainly carbonyl and amine/amide functionalities were generated using N2 plasmas.

View Article and Find Full Text PDF

Plasma polymerized polyacrylic acid (PPAA) was deposited on a polymer substrate, namely polyethylene terephthalate (PET) mesh, for entrapment of silver nanoparticle (Ag-NP) in order to achieve antibacterial property to the material. Carboxylic groups of PPAA act as anchor as well as capping and stabilizing agents for Ag-NPs synthesized by chemical reduction method using NaBH(4) as a reducing agent. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), and water contact angle analysis were used to characterize the PPAA coatings.

View Article and Find Full Text PDF

Catalyst-free ring-opening polymerization (ROP) strategy was developed to overcome the disadvantage of incomplete and expensive removal of catalyst used during the multistep wet chemical processes. Nano-sized biocompatible and low molecular weight poly(ε-carolactone)-poly(ethylene glycol) (PCL-PEG) copolymer coatings were deposited via a single-step, low-pressure, pulsed-plasma polymerization process. Experiments were performed at different monomer feed ratio and effective plasma power.

View Article and Find Full Text PDF

Statistically designed amphiphilic copolymer coatings were deposited onto Thermanox, Si wafer, and quartz crystal microbalance (QCM) substrates via Plasma Enhanced Chemical Vapor Deposition of 1H,1H,2H,2H-perfluorodecyl acrylate and diethylene glycol vinyl ether in an Inductively Excited Low Pressure Plasma reactor. Plasma deposited amphiphilic coatings were characterized by Field Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, Atomic Force Microscopy, and Water Contact Angle techniques. The surface energy of the coatings can be adjusted between 12 and 70 mJ/m(2).

View Article and Find Full Text PDF

The ammonia plasma process was used for generating reactive groups, particularly primary amine functions on the surface of polyethylene (PE) films, to immobilize the enzyme trypsin. The attachment of the enzyme was achieved by directly applying an aqueous solution of trypsin to the plasma-activated surface or by using glutaraldehyde as a chemical linker. In both cases, the utilization of sodium cyanoborohydride efficiently stabilized the immobilization.

View Article and Find Full Text PDF

The aim of this work was to test and to compare different methods reported in the literature to quantify amine and aldehyde functions on the surface of polyethylene (PE) films treated by ammonia plasma and to specify their stability against time. A low pressure ammonia plasma reactor was used to functionalize PE films with amine groups, which could be subsequently used for further immobilization of biomolecules. In order to determine the density of amine groups on the surface of treated films, various molecule probes and spectrophotometric analytical methods have been investigated.

View Article and Find Full Text PDF

We describe a method based on plasma polymerization for the modification and control of the surface properties of poly(dimethylsiloxane) (PDMS) surfaces. By depositing plasma polymerized acrylic acid coatings on PDMS, we succeeded to fabricate stable (several days) hydrophilic and patterned hydrophobic/hydrophilic surfaces. We used this approach to generate direct and (for the first time in this material) double emulsions in PDMS microchannels.

View Article and Find Full Text PDF