The hypothalamic neuropeptide, gonadotropin releasing hormone (GnRH), is a primary regulatory factor in the neuroendocrine control of reproduction. The GnRH decapeptide is released in an episodic manner from hypothalamic GnRH neurons, which are known to express GnRH receptors. Here we examined the signaling pathways by which autocrine GnRH stimulation generates cell survival and proliferative signals in hypothalamic GT1-7 cells.
View Article and Find Full Text PDFAdrenoceptors (ARs) are involved in the regulation of gonadotropin-releasing hormone (GnRH) release from native and immortalized hypothalamic (GT1-7) neurons. However, the AR-mediated signaling mechanisms and their functional significance in these cells are not known. Stimulation of GT1-7 cells with the alpha1-AR agonist, phenylephrine (Phe), causes phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) mitogen-activated protein (MAP) kinases that is mediated by protein kinase C (PKC)-dependent transactivation of the epidermal growth factor receptor (EGF-R).
View Article and Find Full Text PDFThe regulation of adrenal function, including aldosterone production from adrenal glomerulosa cells, is dependent on a variety of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In many cell types, GPCR-mediated MAPK activation is mediated through transactivation of RTKs, in particular the epidermal growth factor (EGF) receptor (EGF-R). However, the extent to which this cross-communication between GPCRs and RTKs is operative in the adrenal glomerulosa has not been defined.
View Article and Find Full Text PDFMany G protein coupled receptors (GPCRs) cause phosphorylation of MAP kinases through transactivation of the epidermal growth factor receptor (EGF-R), leading to increased cell survival and growth, motility, and migration. Phosphoinositide 3-kinase (PI3K) is one of the important cell survival signaling molecules activated by EGF-R stimulation. However, the extent to which EGF-R transactivation is essential for GPCR agonist-stimulated PI3K activation is not known.
View Article and Find Full Text PDF