Publications by authors named "Farzan Majeed Noori"

Objective: In this paper, a novel methodology for feature extraction to enhance classification accuracy of functional near-infrared spectroscopy (fNIRS)-based two-class and three-class brain-computer interface (BCI) is presented.

Approach: Novel features are extracted using vector-based phase analysis method. Changes in oxygenated [Formula: see text] and de-oxygenated [Formula: see text]) haemoglobin are used to calculate four novel features: change in cerebral blood volume ([Formula: see text]), change in cerebral oxygen exchange ([Formula: see text]), vector magnitude (|L|) and angle (k).

View Article and Find Full Text PDF

Background: In this paper, a novel functional near-infrared spectroscopy (fNIRS)-based brain-computer interface (BCI) framework for control of prosthetic legs and rehabilitation of patients suffering from locomotive disorders is presented.

Methods: fNIRS signals are used to initiate and stop the gait cycle, while a nonlinear proportional derivative computed torque controller (PD-CTC) with gravity compensation is used to control the torques of hip and knee joints for minimization of position error. In the present study, the brain signals of walking intention and rest tasks were acquired from the left hemisphere's primary motor cortex for nine subjects.

View Article and Find Full Text PDF

In this paper, a novel methodology for enhanced classification of functional near-infrared spectroscopy (fNIRS) signals utilizable in a two-class [motor imagery (MI) and rest; mental rotation (MR) and rest] brain-computer interface (BCI) is presented. First, fNIRS signals corresponding to MI and MR are acquired from the motor and prefrontal cortex, respectively, afterward, filtered to remove physiological noises. Then, the signals are modeled using the general linear model, the coefficients of which are adaptively estimated using the least squares technique.

View Article and Find Full Text PDF

In this paper, a novel technique for determination of the optimal feature combinations and, thereby, acquisition of the maximum classification performance for a functional near-infrared spectroscopy (fNIRS)-based brain-computer interface (BCI), is proposed. After obtaining motor-imagery and rest signals from the motor cortex, filtering is applied to remove the physiological noises. Six features (signal slope, signal mean, signal variance, signal peak, signal kurtosis and signal skewness) are then extracted from the oxygenated hemoglobin (HbO).

View Article and Find Full Text PDF

We analyse and compare the classification accuracies of six different classifiers for a two-class mental task (mental arithmetic and rest) using functional near-infrared spectroscopy (fNIRS) signals. The signals of the mental arithmetic and rest tasks from the prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging system. After removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO) signals.

View Article and Find Full Text PDF