Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon-based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions.
View Article and Find Full Text PDFThe Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange interaction that stabilizes spin chirality. One scientific and technological challenge is understanding and controlling the interaction between spin chirality and electric field. In this study, we investigate an unconventional electric field effect on interfacial DMI, skyrmion helicity, and skyrmion dynamics in a system with broken inversion symmetry.
View Article and Find Full Text PDFThe interfacial Dzyaloshinskii-Moriya Interaction (iDMI) is an antisymmetric exchange interaction that is induced by the broken inversion symmetry at the interface of, e.g., a ferromagnet/heavy metal.
View Article and Find Full Text PDFAnalogous to the spin-Hall effect (SHE), ab initio electronic structure calculations reveal that acoustic phonons can induce charge (spin) current flowing along (normal to) its propagation direction. Using the Floquet approach we have calculated the elastodynamically induced charge and spin pumping in bulk Pt and demonstrate that (i) the longitudinal charge pumping originates from the Berry curvature, while the transverse pumped spin current is an odd function of the electronic relaxation time and diverges in the clean limit. (ii) The longitudinal charge current is of nonrelativstic origin, while the transverse spin current is a relativistic effect that to lowest order scales linearly with the spin-orbit coupling strength.
View Article and Find Full Text PDFSpin-orbit torques (SOTs) that arise from materials with large spin-orbit coupling offer a new pathway for energy-efficient and fast magnetic information storage. SOTs in conventional heavy metals and topological insulators are explored extensively, while 5d transition metal oxides, which also host ions with strong spin-orbit coupling, are a relatively new territory in the field of spintronics. An all-oxide, SrTiO (STO)//La Sr MnO (LSMO)/SrIrO (SIO) heterostructure with lattice-matched crystal structure is synthesized, exhibiting an epitaxial and atomically sharp interface between the ferromagnetic LSMO and the high spin-orbit-coupled metal SIO.
View Article and Find Full Text PDFElectric field is an energy-efficient tool that can be leveraged to control spin-orbit torques (SOTs). Although the amount of current-induced spin accumulation in a heavy metal (HM)/ferromagnet (FM) heterostructure can be regulated to a certain degree using an electric field in various materials, the control of its direction has remained elusive so far. Here, we report that both the direction and amount of current-induced spin accumulation at the HM/FM interface can be dynamically controlled using an electric field in an oxide capped SOT device.
View Article and Find Full Text PDFThree-dimensional (3D) topological insulators are known for their strong spin-orbit coupling (SOC) and the existence of spin-textured surface states that might be potentially exploited for "topological spintronics." Here, we use spin pumping and the inverse spin Hall effect to demonstrate successful spin injection at room temperature from a metallic ferromagnet (CoFeB) into the prototypical 3D topological insulator Bi2Se3. The spin pumping process, driven by the magnetization dynamics of the metallic ferromagnet, introduces a spin current into the topological insulator layer, resulting in a broadening of the ferromagnetic resonance (FMR) line width.
View Article and Find Full Text PDFWe predict an unconventional spin-transfer torque (STT) acting on the magnetization of a free ferromagnetic (F) layer within N/TI/F vertical heterostructures, which originates from strong spin-orbit coupling on the surface of a three-dimensional topological insulator (TI), as well as from charge current becoming spin polarized in the direction of transport as it flows perpendicularly from the normal metal (N) across the bulk of the TI layer. The STT vector has both in-plane and perpendicular components that are comparable in magnitude to conventional torque in F'/I/F (where I stands for insulator) magnetic tunnel junctions, while not requiring additional spin-polarizing F' layer with fixed magnetization, which makes it advantageous for spintronics applications. Our principal formal result is a derivation of the nonequilibrium Green function-based formula and the corresponding gauge-invariant nonequilibrium density matrix, which makes it possible to analyze the components of the STT vector in the presence of arbitrary strong spin-orbit coupling either in the bulk or at the interface of the free F layer.
View Article and Find Full Text PDF