Publications by authors named "Farzad Hejazi"

Accurate classification of rail transit stations is crucial for successful Transit-Oriented Development (TOD) and sustainable urban growth. This paper introduces a novel classification model integrating traditional methodologies with advanced machine learning algorithms. By employing mathematical models, clustering methods, and neural network techniques, the model enhances the precision of station classification, allowing for a refined evaluation of station attributes.

View Article and Find Full Text PDF

The demand for strengthening reinforced concrete (RC) structures has increased considerably. Implementing carbon-fiber-reinforced polymer (CFRP) bars and concrete jacketing are the most effective techniques for RC beam retrofitting. Using the mechanical anchorage system (MAS) to attach CFRP bars to old concrete is highly recommended to avoid any debonding when it is applied to cyclic loads.

View Article and Find Full Text PDF

Coulomb friction is considered as a mechanical approach to diminish the structural responses during the excitations. However, in case of severe oscillations supplementary mechanisms are employed besides the friction to mitigate the destructive effects of the vibrations in structures. Therefore, the main goal of this research is to develop a new Hybrid System (HS) which is a parallel combination of Viscous Damping (VD) and Coulomb friction for structures subjected to dynamic load.

View Article and Find Full Text PDF

This paper presents a numerical and experimental assessment of a developed adjustable variable stiffness restrainer (AVSR) utilized for short span bridges. This restrainer has the ability to demonstrate multi stiffness capacity in different stages of bridge's superstructure movement to mitigate the severe damage of bridge due to an earthquake. The multi-level stiffness behavior of developed AVSR is achieved by using multiple mechanical springs with different lengths and placed in parallel in proposed design.

View Article and Find Full Text PDF

The use of fibers in cementitious composites yields numerous benefits due to their fiber-bridging capabilities in resisting cracks. Therefore, this study aimed to improve the shear-resisting capabilities of conventional concrete through the hybridization of multiple synthetic fibers, specifically on reinforced concrete structures in seismic-prone regions. For this study, 16 hybrid fiber-reinforced concretes (HyFRC) were developed from the different combinations of Ferro macro-synthetic fibers with the Ultra-Net, Super-Net, Econo-Net, and Nylo-Mono microfibers.

View Article and Find Full Text PDF

Towers are important structures for installing radio equipment to emit electromagnetic waves that allow radio, television and/or mobile communications to function. Feasibility, cost, and speed of the construction are considered in the design process as well as providing stability and functionality for the communication tower. This study proposes the new design for construction of segmental tubular section communication tower with ultra-high-performance fibre concrete (UHPFC) material and prestress tendon to gain durability, ductility, and strength.

View Article and Find Full Text PDF