Publications by authors named "Farzad Farahani"

Recent gains in functional magnetic resonance imaging (fMRI) studies have been driven by increasingly sophisticated statistical and computational techniques and the ability to capture brain data at finer spatial and temporal resolution. These advances allow researchers to develop population-level models of the functional brain representations underlying behavior, performance, clinical status, and prognosis. However, even following conventional preprocessing pipelines, considerable inter-individual disparities in functional localization persist, posing a hurdle to performing compelling population-level inference.

View Article and Find Full Text PDF

(1) Background: Chaos, a feature of nonlinear dynamical systems, is well suited for exploring biological time series, such as heart rates, respiratory records, and particularly electroencephalograms. The primary purpose of this article is to review recent studies using chaos theory and nonlinear dynamical methods to analyze human performance in different brain processes. (2) Methods: Several studies have examined chaos theory and related analytical tools for describing brain dynamics.

View Article and Find Full Text PDF

(1) Background: Multiple sclerosis (MS) is an immune system disease in which myelin in the nervous system is affected. This abnormal immune system mechanism causes physical disabilities and cognitive impairment. Functional magnetic resonance imaging (fMRI) is a common neuroimaging technique used in studying MS.

View Article and Find Full Text PDF

Deep neural networks (DNNs) have transformed the field of computer vision and currently constitute some of the best models for representations learned hierarchical processing in the human brain. In medical imaging, these models have shown human-level performance and even higher in the early diagnosis of a wide range of diseases. However, the goal is often not only to accurately predict group membership or diagnose but also to provide explanations that support the model decision in a context that a human can readily interpret.

View Article and Find Full Text PDF

The perception of physical exertion is the cognitive sensation of work demands associated with voluntary muscular actions. Measurements of exerted force are crucial for avoiding the risk of overexertion and understanding human physical capability. For this purpose, various physiological measures have been used; however, the state-of-the-art in-force exertion evaluation lacks assessments of underlying neurophysiological signals.

View Article and Find Full Text PDF

Task fMRI provides an opportunity to analyze the working mechanisms of the human brain during specific experimental paradigms. Deep learning models have increasingly been applied for decoding and encoding purposes study to representations in task fMRI data. More recently, graph neural networks, or neural networks models designed to leverage the properties of graph representations, have recently shown promise in task fMRI decoding studies.

View Article and Find Full Text PDF

Circadian rhythms (lasting approximately 24 h) control and entrain various physiological processes, ranging from neural activity and hormone secretion to sleep cycles and eating habits. Several studies have shown that time of day (TOD) is associated with human cognition and brain functions. In this study, utilizing a chronotype-based paradigm, we applied a graph theory approach on resting-state functional MRI (rs-fMRI) data to compare whole-brain functional network topology between morning and evening sessions and between morning-type (MT) and evening-type (ET) participants.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) was first discovered in China; within several months, it spread worldwide and became a pandemic. Although the virus has spread throughout the globe, its effects have differed. The pandemic diffusion network dynamics (PDND) approach was proposed to better understand the spreading behavior of COVID-19 in the US and Japan.

View Article and Find Full Text PDF

Electroencephalography (EEG) is a non-invasive technique used to record the brain's evoked and induced electrical activity from the scalp. Artificial intelligence, particularly machine learning (ML) and deep learning (DL) algorithms, are increasingly being applied to EEG data for pattern analysis, group membership classification, and brain-computer interface purposes. This study aimed to systematically review recent advances in ML and DL supervised models for decoding and classifying EEG signals.

View Article and Find Full Text PDF

Background: Cataract is one of the most common age-related vision deteriorations, leading to opacification of the lens and therefore visual impairment as well as blindness. Both cataract extraction and the implantation of blue light filtering lens are believed to improve not only vision but also overall functioning.

Methods: Thirty-four cataract patients were subject to resting-state functional magnetic resonance imaging before and after cataract extraction and intraocular lens implantation (IOL).

View Article and Find Full Text PDF

Cataracts are associated with progressive blindness, and despite the decline in prevalence in recent years, it remains a major global health problem. Cataract extraction is reported to influence not only perception, attention and memory but also daytime sleepiness, ability to experience pleasure and positive and negative affect. However, when it comes to the latter, the magnitude and prevalence of this effect still remains uncertain.

View Article and Find Full Text PDF

Significant differences exist in human brain functions affected by time of day and by people's diurnal preferences (chronotypes) that are rarely considered in brain studies. In the current study, using network neuroscience and resting-state functional MRI (rs-fMRI) data, we examined the effect of both time of day and the individual's chronotype on whole-brain network organization. In this regard, 62 participants (39 women; mean age: 23.

View Article and Find Full Text PDF

Laser welding is a key technology for many industrial applications. However, its online quality monitoring is an open issue due to the highly complex nature of the process. This work aims at enriching existing approaches in this field.

View Article and Find Full Text PDF

Sleep is a complex and dynamic process for maintaining homeostasis, and a lack of sleep can disrupt whole-body functioning. No organ is as vulnerable to the loss of sleep as the brain. Accordingly, we examined a set of task-based functional magnetic resonance imaging (fMRI) data by using graph theory to assess brain topological changes in subjects in a state of chronic sleep restriction, and then identified diurnal variability in the graph-theoretic measures.

View Article and Find Full Text PDF

Analysis of the human connectome using functional magnetic resonance imaging (fMRI) started in the mid-1990s and attracted increasing attention in attempts to discover the neural underpinnings of human cognition and neurological disorders. In general, brain connectivity patterns from fMRI data are classified as statistical dependencies (functional connectivity) or causal interactions (effective connectivity) among various neural units. Computational methods, especially graph theory-based methods, have recently played a significant role in understanding brain connectivity architecture.

View Article and Find Full Text PDF