Publications by authors named "Faruque M Hossain"

Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities.

View Article and Find Full Text PDF

Silicene is an exciting two-dimensional material that shares many of graphene's electronic properties, but differs in its structural buckling. This buckling allows opening a bandgap in silicene through the application of a perpendicular electric field. Here we show that this buckling also enables highly effective modulation of silicene's conductance by means of an in-plane electric field applied through silicene side gates, which can be realized concurrently within the same silicene monolayer.

View Article and Find Full Text PDF

Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device.

View Article and Find Full Text PDF

Graphene is an interesting material with a number of desirable electrical properties. Graphene-based negative differential resistance (NDR) devices hold great potential for enabling the implementation of several elements required in electronic circuits and systems. In this article we propose a novel device structure that exhibits NDR using single layer graphene that is able to be fabricated using standard lithography techniques.

View Article and Find Full Text PDF

We present an asymmetrically-gated Graphene Self-Switching Diode (G-SSD) as a new negative differential resistance (NDR) device, and study its transport properties using nonequilibrium Green's function (NEGF) formalism and the Extended Huckel (EH) method. The device exhibits a new NDR mechanism, in which a very small quantum tunnelling current is used to control a much-larger channel conduction current, resulting in a very pronounced NDR effect. This NDR effect occurs at low bias voltages, below 1 V, and results in a very high current peak in the μA range and a high peak-to-valley current ratio (PVCR) of 40.

View Article and Find Full Text PDF

Graphene normally behaves as a semimetal because it lacks a bandgap, but when it is patterned into nanoribbons a bandgap can be introduced. By varying the width of these nanoribbons this band gap can be tuned from semiconducting to metallic. This property allows metallic and semiconducting regions within a single Graphene monolayer, which can be used in realising two-dimensional (2D) planar Metal-Insulator-Semiconductor field effect devices.

View Article and Find Full Text PDF

Despite tremendous activity in employing the N- V- center in a host of quantum technology applications, the electronic and optical properties of the system are still not theoretically well understood. We have conducted density functional theory calculations of the N- V- system which show convergence at the 3 x 3 x 3 supercell level and for the first time produce a quantitatively accurate picture of the optical transition energy, excited-state lifetime, and optical polarization anisotropy taking into account all possible transitions within all contributing energy bands. These calculations were augmented by a group theoretical analysis, in sum providing a new ab initio understanding of this important solid-state quantum system.

View Article and Find Full Text PDF