Nanofibers, which are formed by the electrospinning process, are used in a variety of applications. For this purpose, a specific diameter suited for each application is required, which is achieved by varying a set of parameters. This parameter adjustment process is empirical and works by trial and error, causing high input costs and wasting time and financial resources.
View Article and Find Full Text PDFIn this paper, we introduce a novel type of transdermal drug delivery device (TD) with a micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the device during the actuation process. For the actuation principles of the chamber and microvalve, both thermopneumatic and piezoelectric principles are employed respectively, originating that the design perfectly integrates those principles through two different components, such as a micropump with integrated microvalves and a microneedle array. The TD has shown to be capable of delivering a volumetric flow of 2.
View Article and Find Full Text PDF