Functional near-infrared spectroscopy (fNIRS) is a widely-used transcranial brain imaging technique in neuroscience research. Nevertheless, the lack of anatomical information from recordings poses challenges for designing appropriate optode montages and for localizing fNIRS signals to underlying anatomical regions. The photon measurement density function (PMDF) is often employed to address these issues, as it accurately measures the sensitivity of an fNIRS channel to perturbations of absorption coefficients at any brain location.
View Article and Find Full Text PDFBackground: Synthesis of neural imaging information from many studies is valuable for identifying stable cortical targets for non-invasive brain stimulation (NIBS). Typically, these targets are specified in Montreal Neurological Institute (MNI) standard brain space. However, in practical NIBS applications, localizing MNI cortical targets often relies on the International 10-20 system or heuristic scalp approaches, which often lacks precision or applies only to specific targets.
View Article and Find Full Text PDF