Organic electrode materials (OEMs), composed of abundant elements such as carbon, nitrogen, and oxygen, offer sustainable alternatives to conventional electrode materials that depend on finite metal resources. The vast structural diversity of organic compounds provides a virtually unlimited design space; however, exploring this space through Edisonian trial-and-error approaches is costly and time-consuming. In this work, we develop a new framework, SPARKLE, that combines computational chemistry, molecular generation, and machine learning to achieve zero-shot predictions of OEMs that simultaneously balance reward (specific energy), risk (solubility), and cost (synthesizability).
View Article and Find Full Text PDFOrganic electrode materials (OEMs) provide sustainable alternatives to conventional electrode materials based on transition metals. However, the application of OEMs in lithium-ion and redox flow batteries requires either low or high solubility. Currently, the identification of new OEM candidates relies on chemical intuition and trial-and-error experimental testing, which is costly and time intensive.
View Article and Find Full Text PDF