Impaired nitric oxide (NO˙)-cyclic guanosine 3', 5'-monophosphate (cGMP) signaling has been observed in many cardiovascular disorders, including heart failure and pulmonary arterial hypertension. There are several enzymatic determinants of cGMP levels in this pathway, including soluble guanylyl cyclase (sGC) itself, the NO˙-activated form of sGC, and phosphodiesterase(s) (PDE). Therapies for some of these disorders with PDE inhibitors have been successful at increasing cGMP levels in both cardiac and vascular tissues.
View Article and Find Full Text PDFViruses such as coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction.
View Article and Find Full Text PDFThe host response to a virus is determined by intracellular signaling pathways that are modified during infection. These pathways converge as networks and produce interdependent phenotypes, making it difficult to link virus-induced signals and responses at a systems level. Coxsackievirus B3 (CVB3) infection induces death of cardiomyocytes, causing tissue damage and virus dissemination, through incompletely characterized host cell signaling networks.
View Article and Find Full Text PDFBackground: Allergic inflammation is commonly observed in a number of conditions that are associated with atopy including asthma, eczema and rhinitis. However, the genetic, environmental or epigenetic factors involved in these conditions are likely to be different. Epigenetic modifications, such as DNA methylation, can be influenced by the environment and result in changes to gene expression.
View Article and Find Full Text PDFInflammatory processes underlie a broad spectrum of conditions that injure the heart muscle and cause both structural and functional deficits. In this article, we address current knowledge regarding 4 common forms of myocardial inflammation: myocardial ischemia and reperfusion, sepsis, viral myocarditis, and immune rejection. Each of these pathological states has its own unique features in pathogenesis and disease evolution, but all reflect inflammatory mechanisms that are partially shared.
View Article and Find Full Text PDFGrowing evidence suggests the Wnt family of secreted glycoproteins and their associated signaling pathways, linked to development, are recapitulated during wound repair and regeneration events. However, the role of the Wnt pathway in such settings remains unclear. In the current study, we treated mouse fibroblasts with 250 ng/mL of recombinant Wnt3a for 72 hours and examined its affect on cell morphology and function.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2010
Signal transduction networks can be perturbed biochemically, genetically, and pharmacologically to unravel their functions. But at the systems level, it is not clear how such perturbations are best implemented to extract molecular mechanisms that underlie network function. Here, we combined pairwise perturbations with multiparameter phosphorylation measurements to reveal causal mechanisms within the signaling network response of cardiomyocytes to coxsackievirus B3 (CVB3) infection.
View Article and Find Full Text PDFReduced cardiac output is one of the consequences of myocarditis. Bosentan, an endothelin-1 receptor (ET1R) antagonist, could be useful to reduce cardiac afterload, preserving cardiac output. In this study, we investigated the potential therapeutic use of bosentan in an animal model of viral myocarditis.
View Article and Find Full Text PDF