In the current investigation, the effect of recycled steel fibers recovered from waste tires on the pull-out response of ribbed steel bars from carbon nanotube (CNT)-modified ultrahigh performance fiber reinforced concrete (UHPFRC) was considered using the multiscale finite element method (MSFEM). The MSFEM is based on three phases to simulate CNT-modified UHPC, recycled steel fibers (RSFs), and ribbed steel bars. For the first time, a bar ribbed has been simulated to make more realistic assumptions, and RSFs have been distributed in the form of curved cylinders of different lengths and with a random distribution within a concrete matrix.
View Article and Find Full Text PDFHigh entropy alloys (HEA) are one of the modern-era alloys accelerating with greater velocity because of their excellent properties and different applications. In the present paper, we have successfully fabricated HEA (23Fe-21Cr-18Ni-20Ti-18Mn) powders by ball milling the elemental Fe, Cr, Ni, Ti, and Mn powders for 15 h. The advancement of the milling process and phase transformation of HEAs were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM).
View Article and Find Full Text PDFCellulosic biomass is considered one of the most promising sources for the production of alternative renewable bioenergy and other valuable products. Identification and optimization of strains with high enzymatic activity that can overcome constraints imposed by the cellulosic structure is an essential step in the development of new biotechnologies. The aim of this study was to isolate and identify thermophilic (50 °C) and mesophilic (37 °C) cellulolytic bacteria from soil and leaves samples at Kerman, Iran.
View Article and Find Full Text PDF