This study assessed the effect of a small-torque generating passive back-support exoskeleton during a low demanding occupational task, namely a repetitive lifting/lowering of an empty crate between the knee and shoulder heights. A comprehensive set of outcomes was considered, ranging from the measured trunk muscle activation and trunk movement to the estimated muscle group forces/coordination, spine loading and spine stability, using a dynamic subject-specific EMG-assisted musculoskeletal model. The exoskeleton decreased back muscle activation and corresponding muscle forces in the lowering phase and reduced spinal loading at larger trunk flexion angles (decreased peak compression and shear forces by ∼ 15%).
View Article and Find Full Text PDFLow back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation.
View Article and Find Full Text PDFSpine biomechanics is at a transformation with the advent and integration of machine learning and computer vision technologies. These novel techniques facilitate the estimation of 3D body shapes, anthropometrics, and kinematics from as simple as a single-camera image, making them more accessible and practical for a diverse range of applications. This study introduces a framework that merges these methodologies with traditional musculoskeletal modeling, enabling comprehensive analysis of spinal biomechanics during complex activities from a single camera.
View Article and Find Full Text PDFFibrin clot is a vital class of fibrous materials, governing the mechanical response of blood clots. Fracture behavior of fibrin clots under complex physiological load is relevant for hemostasis and thrombosis. But how they fracture under cyclic and variable rate loading has not been reported.
View Article and Find Full Text PDFDirect in vivo measurements of spinal stability are not possible, leaving computational estimations (such as dynamic time series and structural analyses) as the feasible option. However, differences between different stability assessment approaches and metrics remain unclear. To explore this, we asked 32 participants to perform 35 cycles of repetitive lifts with and without load (4/2.
View Article and Find Full Text PDFIntervertebral disc (IVD) degeneration and herniation often necessitate surgical interventions including a discectomy with or without a nucleotomy, which results in a loss of the normal nucleus pulposus (NP) and a defect in the annulus fibrosus (AF). Due to the limited regenerative capacity of the IVD tissue, the annular tear may remain a persistent defect and result in recurrent herniation post-surgery. Bioadhesives are promising alternatives but show limited adhesion performance, low regenerative capacity, and inability to prevent re-herniation.
View Article and Find Full Text PDFHeavy deadlift is used as a physical fitness screening tool in the U.S. Army.
View Article and Find Full Text PDFBackground: Multijoint EMG-assisted optimization models are reliable tools to predict muscle forces as they account for inter- and intra-individual variations in activation. However, the conventional method of normalizing EMG signals using maximum voluntary contractions (MVCs) is problematic and introduces major limitations. The sub-maximal voluntary contraction (SVC) approaches have been proposed as a remedy, but their performance against the MVC approach needs further validation particularly during dynamic tasks.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
November 2022
About a third of knee joint disorders originate from the patellofemoral (PF) site that makes stair ascent a difficult activity for patients. A detailed finite element model of the knee joint is coupled to a lower extremity musculoskeletal model to simulate the stance phase of stair ascent. It is driven by the mean of measurements on the hip-knee-ankle moments-angles as well as ground reaction forces reported in healthy individuals.
View Article and Find Full Text PDFConventional electromyography-driven (EMG) musculoskeletal models are calibrated during maximum voluntary contraction (MVC) tasks, but individuals with low back pain cannot perform unbiased MVCs. To address this issue, EMG-driven models can be calibrated in submaximal tasks. However, the effects of maximal (when data points include the maximum contraction) and submaximal calibration techniques on model outputs (e.
View Article and Find Full Text PDFMechanical properties of blood clots play a crucial role in hemostasis and embolization. They are time-dependent and often described with viscoelastic models. But blood clots also exhibit some hallmark features of poroelasticity, as most biological tissues exhibit concurrent viscoelasticity and poroelasticity.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
August 2022
Various interpretations and parameters have been proposed to assess spinal stability such as antagonist muscle coactivity, trunk stiffness and spinal buckling load; however, the correlation between these parameters remains unknown. We evaluated spinal stability during different tasks while changing the external moment and load height and investigated likely relationships between different EMG- and model-based parameters (e.g.
View Article and Find Full Text PDFCollagen fibers within the annulus fibrosus (AF) lamellae are unidirectionally aligned with alternating orientations between adjacent layers. AF constitutive models often combine two adjacent lamellae into a single equivalent layer containing two fiber networks with a crisscross pattern. Additionally, AF models overlook the inter-lamellar matrix (ILM) as well as elastic fiber networks in between lamellae.
View Article and Find Full Text PDFExcessive loads on the human spine is recognized as a risk factor for back injuries/pain. Various lifting analysis tools such as musculoskeletal models, regression equations and NIOSH (National Institute for Occupational Safety and Health) lifting equation (NLE) have been proposed to evaluate and mitigate associated risks during manual material handling activities. Present study aims to compare predicted spinal loads from 5 different lifting analysis tools as well as to critically evaluate the NIOSH recommended weight limit (RWL).
View Article and Find Full Text PDFHuman lumbar motion segment is composed of various components with distinct contributions to its gross mechanical response. By employing experimental and computational approaches, many studies have investigated the relative role of each component as well as effects of various factors such as boundary-initial conditions, load magnitude-combination-direction, load temporal regime, preload, posture, degeneration, failures and surgical interventions on load-sharing. This paper reviews and critically discusses the relevant findings of in vitro and finite element model studies on load-sharing in healthy, aged, degenerate and damaged human lumbar motion segments.
View Article and Find Full Text PDFAs a primary load-resisting component, annulus fibrosus (AF) maintains structural integrity of the entire intervertebral disc. Experiments have demonstrated that permanent deformation and damage take place in the tissue under mechanical loads. Development of an accurate model to capture the complex behaviour of AF tissue is hence crucial in disc model studies.
View Article and Find Full Text PDFBackground: Motor control exercise was claimed to improve spinal stability in patients with chronic non-specific back pain, but to investigate the effectiveness of this exercise, other outcome measures have been used rather than spinal stability itself. The aim of our study is to assess motor control exercise effects on spinal stability using a biomechanical model.
Methods: Fifty-one patients were assigned to either motor control or general exercises.
Underlying mechanisms of obesity-related back pain remain unexplored. Thus, we aim to determine the effect of obesity and its shapes on the spinal loads and the associated risks of injury. Obesity shapes were initially constructed by principal component analysis based on datasets on 5852 obese individuals.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
November 2015
Due to the complexity of the human spinal motion segments, the intervertebral joints are often simulated in the musculoskeletal trunk models as pivots thus allowing no translational degrees of freedom (DOFs). This work aims to investigate, for the first time, the effect of such widely used assumption on trunk muscle forces, spinal loads, kinematics, and stability during a number of static activities. To address this, the shear deformable beam elements used in our nonlinear finite element (OFE) musculoskeletal model of the trunk were either substantially stiffened in translational directions (SFE model) or replaced by hinge joints interconnected through rotational springs (HFE model).
View Article and Find Full Text PDF