Background And Aims: Fire-released seed dormancy (SD) is a key trait for successful germination and plant persistence in many fire-prone ecosystems. Many local studies have shown that fire-released SD depends on heat and exposure time, dose of smoke-derived compounds, SD class, plant lineage and the fire regime. However, a global quantitative analysis of fire-released SD is lacking.
View Article and Find Full Text PDFHigh temperature stress (HTS) imposes secondary dormancy (SD) also known as thermo-dormancy in many seeds. Priming by soil moisture however, may improve germination though under HTS it may compromise seed longevity. Knowledge of how HTS and priming affect dormancy status/viability loss of a particular crop seed species is essential in agriculture.
View Article and Find Full Text PDFBackground: Exposing imbibed seeds to high temperatures may lead to either thermo-inhibition of germination or thermo-dormancy responses. In thermo-inhibition, seed germination is inhibited but quickly resumed when temperatures are lowered. Upon prolonged exposure to elevated temperatures, thermo-dormancy may be induced and seeds are not able to germinate even at optimal temperatures.
View Article and Find Full Text PDF