Publications by authors named "Farshid Effaty"

We report a rapid, room-temperature mechanochemical synthesis of 2- and 3-dimensional boroxine covalent organic frameworks (COFs), enabled by using trimethylboroxine as a dehydrating additive to overcome the hydrolytic sensitivity of boroxine-based COFs. The resulting COFs display high porosity and crystallinity, with COF-102 being the first example of a mechanochemically prepared 3D COF, exhibiting a surface area of ca. 2,500 m g.

View Article and Find Full Text PDF

Resonant acoustic mixing (RAM) enables mechanoredox catalysis with BaTiO as the piezoelectric catalyst on model diazonium coupling reactions. RAM proceeds without formal grinding or impact media, is faster than the analogous ball-milling strategy, and is readily scalable. X-ray diffraction and spectroscopy indicate that reusability of BaTiO as a mechanoredox catalyst under ball-milling or RAM might be limited by boration.

View Article and Find Full Text PDF

Redox noninnocent ligands enhance the reactivity of the metal they complex, a strategy used by metalloenzymes and in catalysis. Herein, we report a series of copper complexes with the same ligand framework, but with a pendant nitrogen group that spans five different redox states between nitro and amine. Of particular interest is the synthesis of a unprecedented copper(I)-arylhydroxylamine complex.

View Article and Find Full Text PDF

A series of copper/nitrosoarene complexes was created that mimics several steps in biomimetic O activation by copper(I). The reaction of the copper(I) complex of ,,','-tetramethypropylenediamine with a series of para-substituted nitrosobenzene derivatives leads to adducts in which the nitrosoarene (ArNO) is reduced by zero, one, or two electrons, akin to the isovalent species dioxygen, superoxide, and peroxide, respectively. The geometric and electronic structures of these adducts were characterized by means of X-ray diffraction, vibrational analysis, ultraviolet-visible spectroscopy, NMR, electrochemistry, and density functional theory (DFT) calculations.

View Article and Find Full Text PDF