Although levodopa remains the most efficacious symptomatic therapy for Parkinson disease (PD), management of levodopa treatment during the advanced stages of the disease is extremely challenging. This difficulty is a result of levodopa's short half-life, a progressive narrowing of the therapeutic window, and major inter-patient and intra-patient variations in the dose-response relationship. Therefore, a suitable alternative to repeated oral administration of levodopa is being sought.
View Article and Find Full Text PDFThe ability to continuously monitor the concentration of specific molecules in the body is a long-sought goal of biomedical research. For this purpose, interstitial fluid (ISF) was proposed as the ideal target biofluid because its composition can rapidly equilibrate with that of systemic blood, allowing the assessment of molecular concentrations that reflect full-body physiology. In the past, continuous monitoring in ISF was enabled by microneedle sensor arrays.
View Article and Find Full Text PDFBackground: The estimation of available active insulin remains a limitation of automated insulin delivery systems. Currently, insulin pumps calculate active insulin using mathematical decay curves, while quantitative measurements of insulin would explicitly provide person-specific PK insulin dynamics to assess remaining active insulin more accurately, permitting more effective glucose control.
Methods: We performed the first clinical evaluation of an insulin immunosensor chip, providing near real-time measurements of insulin levels.
J Diabetes Sci Technol
July 2023
Background: Clinical decision support systems that incorporate information from frequent insulin measurements to enhance individualized diabetes management remain an unmet goal. The development of a disposable insulin strip for fast decentralized point-of-care detection replacing the current centralized lab-based methods used in clinical practice would be highly desirable to improve the establishment of individual insulin absorption patterns and algorithm modeling processes.
Methods: We carried out the development and optimization of a novel decentralized disposable insulin electrochemical sensor focusing on obtaining high analytical and operational performance toward achieving a true point-of-care insulin testing device for clinical on-site application.
The coronavirus SARS-CoV-2 can survive in wastewater for several days with a potential risk of waterborne human transmission, hence posing challenges in containing the virus and reducing its spread. Herein, we report on an active biohybrid microrobot system that offers highly efficient capture and removal of target virus from various aquatic media. The algae-based microrobot is fabricated by using click chemistry to functionalize microalgae with angiotensin-converting enzyme 2 (ACE2) receptor against the SARS-CoV-2 spike protein.
View Article and Find Full Text PDFAs wearable healthcare monitoring systems advance, there is immense potential for biological sensing to enhance the management of type 1 diabetes (T1D). The aim of this work is to describe the ongoing development of biomarker analytes in the context of T1D. Technological advances in transdermal biosensing offer remarkable opportunities to move from research laboratories to clinical point-of-care applications.
View Article and Find Full Text PDFDespite the fast development of various energy harvesting and storage devices, their judicious integration into efficient, autonomous, and sustainable wearable systems has not been widely explored. Here, we introduce the concept and design principles of e-textile microgrids by demonstrating a multi-module bioenergy microgrid system. Unlike earlier hybrid wearable systems, the presented e-textile microgrid relies solely on human activity to work synergistically, harvesting biochemical and biomechanical energy using sweat-based biofuel cells and triboelectric generators, and regulating the harvested energy via supercapacitors for high-power output.
View Article and Find Full Text PDFWhile the current smartwatches and cellphones can readily track mobility and vital signs, a new generation of wearable devices is rapidly developing to enable users to monitor their health parameters at the molecular level. Within this emerging class of wearables, microneedle-based transdermal sensors are in a prime position to play a key role in synergizing the significant advantages of dermal interstitial fluid (ISF) as a rich source of clinical indicators and painless skin pricking to allow the collection of real-time diagnostic information. While initial efforts of microneedle sensing focused on ISF extraction coupled with either on-chip analysis or off-chip instrumentation, the latest trend has been oriented toward assembling electrochemical biosensors on the tip of microneedles to allow direct continuous chemical measurements.
View Article and Find Full Text PDFBackground And Objectives: The aim of this study was to determine the prevalence of at broiler breeder farms of Iran and investigate the factors underlying salmonellosis in these farms. This is a cross-sectional investigation conducted in 23 provinces of Iran.
Materials And Methods: Fecal samples were collected from 139 broiler breeder farms in the country and standard bacteriological tests were carried out on the samples for the isolation of .
Biosens Bioelectron
November 2020
Here we describe the development of a dual electrochemical immunosensor microchip for simultaneous detection of insulin (I) and cortisol (C) biomarkers that can enhance the ability to improve glucose regulation using automated insulin delivery. The successful realization of the simultaneous I and C measurements has been realized by integrating different enzymatically-tagged competitive and sandwich immunoassay formats on a single chip platform. The insulin detection is based on a peroxidase (HRP)-labeled sandwich assay whereas the cortisol detection relies on an alkaline phosphatase (ALP)-labeled competitive immunoassay.
View Article and Find Full Text PDFThere are urgent needs for sensing devices capable of distinguishing between episodes of opioid overdose and nerve agent poisoning. This work presents a wearable microneedle sensor array for minimally invasive continuous electrochemical detection of opioid (OPi) and organophosphate (OP) nerve agents on a single patch platform. The new multimodal microneedle sensor array relies on unmodified and organophosphorus hydrolase (OPH) enzyme-modified carbon paste (CP) microneedle electrodes for square wave voltammetric (SWV) detection of the fentanyl and nerve agent targets, respectively.
View Article and Find Full Text PDFDiabetic ketoacidosis (DKA), a severe complication of diabetes mellitus with potentially fatal consequences, is characterized by hyperglycemia and metabolic acidosis due to the accumulation of ketone bodies, which requires people with diabetes to monitor both glucose and ketone bodies. However, despite major advances in diabetes management mainly since the emergence of new-generation continuous glucose monitoring (CGM) devices capable of in vivo monitoring of glucose directly in the interstitial fluid (ISF), the continuous monitoring of ketone bodies is yet to be addressed. Here, we present the first use of a real-time continuous ketone bodies monitoring (CKM) microneedle platform.
View Article and Find Full Text PDFA multifunctional motile microtrap is developed that is capable of autonomously attracting, trapping, and destroying pathogens by controlled chemoattractant and therapeutic agent release. The onion-inspired multi-layer structure contains a magnesium engine core and inner chemoattractant and therapeutic layers. Upon chemical propulsion, the magnesium core is depleted, resulting in a hollow structure that exposes the inner layers and serves as structural trap.
View Article and Find Full Text PDFAlzheimer's disease is a devastating condition characterized by a progressive and slow brain decay in elders. Here, we developed a paper-based lateral flow immunoassay for simultaneous and fast determination of Alzheimer's blood biomarkers, fetuin B and clusterin. Selective antibodies to targeted biomarkers were immobilized on gold nanoparticles (AuNPs) and deposited on paper pads.
View Article and Find Full Text PDFTrop Anim Health Prod
March 2019
Rapid and precise analytical tools are essential for monitoring food safety and screening of any undesirable contaminants, allergens, or pathogens, which may cause significant health risks upon consumption. Substantial developments in analytical techniques have empowered the analyses and quantitation of these contaminants. However, conventional techniques are limited by delayed analysis times, expensive and laborious sample preparation, and the necessity for highly-trained workers.
View Article and Find Full Text PDFBackground And Objectives: Different epidemiological studies have found that backyard chickens are a reservoir for poultry diseases. Most backyard chicken flocks have a poor level of biosecurity, which increases the risk of spread of diseases. In recent years, the number of backyard chickens has been on the rise in Iran.
View Article and Find Full Text PDFIn 2010, H5N8 highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage dramatically affected poultry and wild birds in Asia, Europe, and North America. In November 2016, HPAI H5N8 was detected in a commercial layer farm in Tehran province. The diagnosis was based on real-time reverse transcriptase PCR (RRT-PCR) and sequencing of haemaglutinin (HA) and neuraminidase (NA) genes from suspected samples.
View Article and Find Full Text PDFHighly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have been diversified into multiple phylogenetic clades over the past decade and are highly genetically variable. In June 2015, one outbreak of HPAI H5N1 in backyard chickens was reported in the Nogardan village of the Mazandaran Province. Tracheal tissues were taken from the dead domestic chickens (n = 10) and processed for RT-PCR.
View Article and Find Full Text PDFA novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.
View Article and Find Full Text PDFA rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.
View Article and Find Full Text PDF