Background: Virus-like particles are an interesting vector platform for vaccine development. Particularly, Hepatitis B virus core antigen has been used as a promising VLP platform. It is highly expressed in different recombinant expression systems, such as E.
View Article and Find Full Text PDFAfter its emergence in late 2019 SARS-CoV-2 was declared a pandemic by the World Health Organization on 11 March 2020 and has claimed more than 2.8 million lives. There has been a massive global effort to develop vaccines against SARS-CoV-2 and the rapid and low cost production of large quantities of vaccine is urgently needed to ensure adequate supply to both developed and developing countries.
View Article and Find Full Text PDFVirus-like particles (VLPs) are a class of structures formed by the self-assembly of viral capsid protein subunits and contain no infective viral genetic material. The Hepatitis B core (HBc) antigen is capable of assembling into VLPs that can elicit strong immune responses and has been licensed as a commercial vaccine against Hepatitis B. The HBc VLPs have also been employed as a platform for the presentation of foreign epitopes to the immune system and have been used to develop vaccines against, for example, influenza A and Foot-and-mouth disease.
View Article and Find Full Text PDFAt the end of the year 2019, the novel coronavirus (2019-nCoV) was spreading in Wuhan, China, and the outbreak process has a high speed. It was recognized as a pandemic by the World Health Organization (WHO) on 11 March 2020. Coronaviruses are enveloped and single-stranded RNA that have several families including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS).
View Article and Find Full Text PDFRecently, cellulose nanocrystals (CNCs) have attracted a significant interest in different fields including drug delivery, biomedical, and food applications. In this study, homogenization-ultrasonication as a non-hazardous, time-saving, and organic solvent free technique was applied for fabrication of CNCs from cotton linter, containing over 90% cellulose. First, acid hydrolysis was applied on raw cellulose using sulfuric acid at 55, 60 and 65% for 3, 5 and 7 min and at various homogenization speeds.
View Article and Find Full Text PDFCellulose nanocrystals (CNCs) have novel and diversified applications in different fields including packaging and nanodelivery systems. This study was dedicated to fabricate CNCs from walnut shell as an abundant source of agricultural byproducts using alkali/acidic hydrolysis method. Moreover, homogenizer and ultrasound devices were applied to produce the CNCs with minimum hazardous solvents in the preparation steps.
View Article and Find Full Text PDF