The cyclin-dependent kinase inhibitors (CKIs) belong to a group of key cell cycle proteins that regulate important cancer drug targets such as the cyclin/CDK complexes. Gene defects in the INK4A/B CKI tumor suppressor locus are frequently associated with human cancers and we have previously identified similar defects in canine models. Many of the cancer-associated genetic alterations, known to play roles in mammary tumor development and progression, appear similar in humans and dogs.
View Article and Find Full Text PDFBreast cancer is among the most common malignancies affecting women and reproductively intact female dogs, resulting in death from metastatic disease if not treated effectively. To better manage the disease progression, canine mammary tumor (CMT) cells derived from malignant canine mammary cancers were fused to autologous dendritic cells (DCs) to produce living hybrid-cell fusion vaccines for canine patients diagnosed with spontaneous mammary carcinoma. The high-speed sorting of rare autologous canine patient DCs from the peripheral blood provides the autologous component of fusion vaccines, and fusion to major histocompatibility complex-unmatched CMT cells were produced at high rates.
View Article and Find Full Text PDFWell characterized, stable, p16-defective canine mammary cancer (CMT) cell lines and normal canine mammary epithelial cells were used to investigate expression of the major breast cancer-specific hormone receptors estrogen receptor alpha (ER1) and progesterone receptor (PR) as well as luminal epithelial-specific proto-oncogenes encoding c-B-1 (epidermal growth factor receptor/EGFr), c-B-2/HER2, c-B-3, and c-B-4 receptors. The investigation developed and validated quantitative reverse transcriptase polymerase chain reaction assays for each transcript to provide rapid assessment of breast cancer phenotypes for canine cancers, based on ER1, PR, and c-B-2/HER2 expressions, similar to those in human disease. Roles for relatively underexplored c-B-3 and c-B-4 receptor expressions in each of these breast cancer phenotypes were also evaluated.
View Article and Find Full Text PDFBreast cancer represents the second most frequent neoplasm in humans and sexually intact female dogs after lung and skin cancers, respectively. Many similar features in human and dog cancers including, spontaneous development, clinical presentation, tumor heterogeneity, disease progression and response to conventional therapies have supported development of this comparative model as an alternative to mice. The highly conserved similarities between canine and human genomes are also key to this comparative analysis, especially when compared to the murine genome.
View Article and Find Full Text PDFmicroRNA (miRNA) expression profiling of cancer versus normal cells may reveal the characteristic regulatory features that can be correlated to altered gene expression in both human and animal models of cancers. In this study, the comprehensive expression profiles of the 277 highly characterized miRNAs from the canine genome were evaluated in spontaneous canine mammary tumor (CMT) models harboring defects in a group of cell cycle regulatory and potent tumor suppressor genes of INK4/CDKN2 family including p16/INK4A, p14ARF, and p15/INK4B. A large number of differentially expressed miRNAs were identified in three CMT cell lines to potentially target oncogenes, tumor suppressor genes and cancer biomarkers.
View Article and Find Full Text PDFThe INK4 family of cyclin-dependent kinase inhibitors (CKI) encode important cell cycle regulators that tightly control cell cycle during G1 to S phase. These related genes are considered tumor suppressors as loss of function contributes to the malignant phenotype. Expression of CKIs p16, p14ARF, or p15 were defective in six different canine mammary tumor (CMT) cell lines compared to normal thoracic canine fibroblasts.
View Article and Find Full Text PDF