Wearable health monitoring has emerged as a promising solution to the growing need for remote health assessment and growing demand for personalized preventative care and wellness management. Vital signs can be monitored and alerts can be made when anomalies are detected, potentially improving patient outcomes. One major challenge for the use of wearable health devices is their energy efficiency and battery-lifetime, which motivates the recent efforts towards the development of self-powered wearable devices.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
The goal of this study is to characterize the accuracy of prediction of physiological responses for varying forecast lengths using multi-modal data streams from wearable health monitoring platforms. We specifically focus on predicting breathing rate due to its significance in medical and exercise physiology research. We implement a nonlinear support vector machine regression model for accurate prediction of future values of these physiological signals with forecast windows of up to one minute long.
View Article and Find Full Text PDF