We have developed QUANTAS (QUANTification by Artificial Signal), which is a software-based protocol for concentration measurement by NMR. QUANTAS is an absolute intensity external standard method for quantification by NMR that compensates for various experimental parameters. It is applicable to all nuclei and modern spectrometers.
View Article and Find Full Text PDFWe present here a definitive metabonomic analysis in order to detect novel biomarker and metabolite information, implicating specific putative protein targets in the toxicological mechanism of bromobenzene-induced centrilobular hepatic necrosis. Male Han-Wistar rats were dosed with bromobenzene (1.5 g/kg, n = 25) and blood plasma, urine and liver samples were collected for NMR and magic angle spinning (MAS) NMR spectroscopy at various time-points postdose, with histopathology and clinical pathology performed in parallel.
View Article and Find Full Text PDFWe present here the potential of an integrated metabonomic strategy to deconvolute the biofluid metabolic signatures in experimental animals following multiple organ toxicities, using the well-known hepato- and nephrotoxin, thioacetamide. Male Han-Wistar rats were dosed with thioacetamide (150 mg/kg, n = 25), and urine, plasma, liver, and kidney samples were collected postdose for conventional NMR and magic angle spinning (MAS) NMR spectroscopy. These data were correlated with histopathology and plasma clinical chemistry collected at all time points.
View Article and Find Full Text PDFBackground: From investigations of a child with hyperprolinaemia type II, we demonstrated in vitro that pyridoxal phosphate forms a novel adduct with a proline metabolite, pyrroline-5-carboxylic acid, through Claisen condensation. Studies indicated that this was a previously unsuspected generic reaction of aldehydes and some ketones. We have subsequently found the acetoacetic acid adduct in both plasma and urine from the affected child.
View Article and Find Full Text PDFThe metabolite profiles from livers of toxin-treated rats were investigated using high resolution 1H NMR spectroscopy of aqueous (acetonitrile/water), lipidic (chloroform/methanol) extracts and magic angle spinning (MAS)-NMR spectroscopy of intact tissue. Rats were treated with the model cholestatic hepatotoxin, alpha-naphthylisothiocyanate (ANIT, 150 mg/kg) and NMR spectra of liver were analysed using principal components analysis (PCA) to extract novel toxicity biomarker information. 1H NMR spectra of control aqueous extracts showed signals from a range of organic acids and bases, amino acids, sugars, and glycogen.
View Article and Find Full Text PDFA capillary NMR flow probe was designed to generate high-resolution (1)H NMR spectra at 600 MHz from the cleaved product of individual 160-microm Tentagel combinatorial chemistry beads. By injecting a dissolved sample sandwiched between an immiscible, perfluorinated organic liquid directly into the probe, NMR spectra of the product cleaved from single beads were acquired in just 1 h of spectrometer time without diffusional dilution. Sample handling efficiency on the single bead scale was comparable to that obtained with a bulk sample.
View Article and Find Full Text PDFWe present here a novel integrative metabonomic approach to probe toxic effects of drugs in experimental animals using alpha-naphthylisothiocyanate (ANIT) as a model hepatotoxicant. Male Han-Wistar rats were dosed with ANIT (150 mg/kg, n = 25), and plasma and liver samples were collected for NMR and magic-angle spinning (MAS) NMR spectroscopy at 3, 7, 24, 31, and 168 h postdosing. Urine was collected continuously for 3 days prior to dosing and up to 168 h postdose.
View Article and Find Full Text PDFThe systemic biochemical effects of oral hydrazine administration (dosed at 75, 90, and 120 mg/kg) have been investigated in male Han Wistar rats using metabonomic analysis of (1)H NMR spectra of urine and plasma, conventional clinical chemistry, and liver histopathology. Plasma samples were collected both pre- and 24 h postdose, while urine was collected predose and daily over a 7 day postdose period. (1)H NMR spectra of the biofluids were analyzed visually and via pattern recognition using principal component analysis.
View Article and Find Full Text PDFWe previously identified vitamin B6 deficiency in a child presenting with seizures whose primary diagnosis was the inherited disorder hyperprolinemia type II. This is an unrecognized association, which was not explained by diet or medication. We hypothesized that pyridoxal phosphate (vitamin B6 coenzyme) was de-activated by L-Delta(1)-pyrroline-5-carboxylic acid, the major intermediate that accumulates endogenously in hyperprolinemia type II.
View Article and Find Full Text PDFHigh-resolution magic angle spinning (MAS) (1)H NMR spectroscopy has been used to investigate the biochemical composition of whole rat renal cortex and liver tissue samples. The effects of a number of sample preparation procedures and experimental variables have been investigated systematically in order to optimize spectral quality and maximize information recovery. These variables include the effects of changing the sample volume in the MAS rotor, snap-freezing the samples, and the effect of organ perfusion with deuterated saline solution prior to MAS NMR analysis.
View Article and Find Full Text PDFThe metabolism and futile deacetylation of phenacetin has been investigated in the rat via 1H NMR spectroscopic analysis of urine. Animals were dosed with either phenacetin or phenacetin-C2H3 and urine samples were collected for -24-0 (pre-dosing), 0-8. 8-24, and 24-48 h post-dosing.
View Article and Find Full Text PDFThe impurity profile of production batches of fluorine-containing drugs can be characterised efficiently using 19F NMR spectroscopy. This yields the number and proportions of impurities in the bulk drug to a level of approximately equal 0.1 mole% in a few minutes of NMR experiment time.
View Article and Find Full Text PDFIt is demonstrated that the NMR spectra of liquid crystalline samples can be simplified by using multiple quantum filtering. In a system of N spin-12 nuclei, the N or (N-1)-multiple quantum filtered spectra (NQF or (N-1)QF) contain lines which originate only from transitions among the eigenstates belonging to the highest symmetry class of the spin permutation group. In addition the NQF spectra are divided further into two sets of lines which differ in phase by 180 degrees.
View Article and Find Full Text PDFThe use of 2H NMR spectroscopy as a detector for HPLC has been investigated using the continuous flow method in which rat urine containing metabolites of N-dimethylformamide-d7 was employed as a test case. Three xenobiotic-related species, including DMF-d7 itself, were detected. It is shown that for small molecules which give relatively sharp 2H NMR resonances, 2H HPLC-NMR spectroscopy is a feasible technique.
View Article and Find Full Text PDF1. 1H-NMR spectroscopy of urine was used to determine the % deacetylation and re-acetylation of 2H-labelled (in the acetyl) phenacetin metabolites in the rat. 2.
View Article and Find Full Text PDF750 MHz 1H NMR spectroscopy has been used to characterise in detail the abnormal low molecular weight metabolites of urine from two patients with inborn errors of metabolism. One case of the rare condition 2-hydroxyglutaric aciduria has been examined. There is at present no rapid routine method to detect this genetic defect, although NMR spectroscopy of urine is shown to provide a distinctive pattern of resonances.
View Article and Find Full Text PDFHPLC-NMR spectroscopy has been used to investigate the level of deacetylation followed by reacetylation (futile deacetylation) of metabolites of paracetamol detected in human and rat urine. This has been achieved through the synthesis and administration of paracetamol isotopically labeled at the acetyl group with C2H3, 13CH3 and 13CO-13CH3. Using paracetamol-C2H3 it had been shown that in the rat the sulphate metabolite present in the urine shows 10-13% futile deacetylation depending on the dose, whereas for paracetamol-13CO-13CH3 the corresponding value was about 8%.
View Article and Find Full Text PDFHigh resolution 19F NMR spectroscopy has been used to investigate the kinetics of internal acyl migration and hydrolysis of the synthetic beta -1-O-acyl-D-glucopyranuronates of 2-, 3-, and 4-(trifluoromethyl) benzoic acids (TFMBAs) in phosphate buffer solutions at 30 degrees C as models of drug ester glucuronides. Apparent first-order degradation of the 1-O-acyl glucuronide and the sequential appearance of 2-, 3-, and 4-O-acyl isomers as both alpha- and beta-anomeric forms were observed for each TFMBA isomer. The overall degradation rate constants of the 2-, 3-, and 4-TFMBA 1-O-acyl isomers were 0.
View Article and Find Full Text PDFEster glucuronides (1-O-acyl-β-d-glucopyranuronates) of many drugs may undergo internal acyl migration reactions, resulting in the formation of new positional isomers with both α- and β-anomers. We illustrate here a novel approach for the direct investigation of the acyl migration kinetics of ester glucuronides and show the application with respect to the isomers of synthetic (2-fluorobenzoyl)-d-glucopyranuronic acid. Individual isomers were separated from an equilibrium mixture containing the β-1-O-acyl, α- and β-2-O-acyl, α- and β-3-O-acyl, and α- and β-4-O-acyl isomers at pH 7.
View Article and Find Full Text PDF1. Human urine samples from a clinical trial of the anti-HIV compound (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-cyto sin e (BW524W91) have been analysed using 19F-nmr and 1H-hplc-nmr spectroscopy. 2.
View Article and Find Full Text PDF1. The metabolism of 1-ethylphenoxathiin-10,10-dioxide (BW1370U87), an experimental compound designed as an inhibitor of monoamine oxidase-A for use as a possible anti-depression agent, has been studied in a human liver microsome preparation. 2.
View Article and Find Full Text PDFMany drugs containing carboxylic acid functional groups are metabolised in vivo to ester glucuronides (1-O-acyl-beta-D-glucopyranuronates) and, of these, a number show a propensity to undergo internal isomerisation via a transacylation process, causing the carboxylic acid moiety to migrate successively to the 2-, 3- and 4-positions of the glucuronic acid. These products may be responsible, through reactions with plasma proteins, for some of the allergenic side effects in a number of non-steroidal anti-inflammatory drugs. It is important to understand those properties of the drug molecules which facilitate this reaction, and to this end we have studied the transacylation product formation and reaction kinetics in a series of aryl carboxylic acid glucuronides using NMR spectroscopy.
View Article and Find Full Text PDFParacetamol (4-hydroxyacetanilide, acetaminophen) was synthesized with the acetyl group labelled with C2H3 (paracetamol-C2H3), and dosed to rats i.p. at 25 mg/kg (N = 5) and 40 mg/kg (N = 3) body weight.
View Article and Find Full Text PDFHigh-resolution 750 MHz 1H NMR spectra of control human blood plasma have been measured and assigned by the concerted use of a range of spin-echo, two-dimensional J-resolved, and homonuclear and heteronuclear (1H-13C) correlation methods. The increased spectral dispersion and sensitivity at 750 MHz enable the assignment of numerous 1H and 13C resonances from many molecular species that cannot be detected at lower frequencies. This work presents the most comprehensive assignment of the 1H NMR spectra of blood plasma yet achieved and includes the assignment of signals from 43 low M(r) metabolites, including many with complex or strongly coupled spin systems.
View Article and Find Full Text PDFThe applicability of coupled reversed-phase high performance liquid chromatography (HPLC)-NMR spectroscopy for the detection and identification of paracetamol (N-(4-hydroxyphenyl)acetamide) and its sulfate, glucuronide and N-acetylcysteinyl metabolites in the unprocessed biological fluids, human urine, rat urine and rat bile, is investigated. Analysis of these samples was performed by gradient HPLC elution and directly coupled 500 MHz 1H NMR spectroscopy detection using a combination of one- and two-dimensional NMR methods in stopped-flow mode. The stopped-flow approach is demonstrated to be an efficient technique for identification of drug metabolites which have, for example, a UV-chromophore.
View Article and Find Full Text PDF