Publications by authors named "Farrant D"

Quantifying ecosystem services provided by mobile species like insectivorous bats remains a challenge, particularly in understanding where and how these services vary over space and time. Bats are known to offer valuable ecosystem services, such as mitigating insect pest damage to crops, reducing pesticide use, and reducing nuisance pest populations. However, determining where bats forage is difficult to monitor.

View Article and Find Full Text PDF

Terahertz (THz) radiation has the capability to combine spectroscopy and imaging in a single system. The resulting hyperspectral images can reveal concealed objects and identify materials by means of characteristic spectral features. For security applications, THz is attractive for its non-contact and non-destructive measurement capabilities.

View Article and Find Full Text PDF

A volume-constraint method is presented as a means to capture the influence of thermal expansion on the low-frequency vibrations in molecular crystals. In particular, the room-temperature terahertz absorption spectra of L-tartaric acid, α-lactose monohydrate, and α--aminobenzoic acid (PABA) have been simulated using dispersion-corrected, solid-state density functional theory (DFT-D). By comparing the normal modes obtained with a unit cell optimised without constraints to those obtained with a unit cell optimised while constrained to keep its experimental volume, wholesale improvements to the resultant spectrum is achieved when using the constrained geometry by inhibiting cell contraction.

View Article and Find Full Text PDF

Integrated agriculture and aquaculture systems (IAAS) allow nutrients, energy, and water to flow throughout the components of the system, increasing the efficiency with which inputs are converted to food. Yet effectively designing an IAAS requires understanding how nutrients accumulate and alter the system's productivity. Here we developed a mechanistic model for nitrogen transport and utilization and parameterized it using the IAAS in He'eia, Hawai'i.

View Article and Find Full Text PDF

A method based on phase-shifting Fizeau interferometry is presented with which retroreflectors with large incoming-outgoing beam separations can be tested. The method relies on a flat Reference Bar that is used to align two auxiliary mirrors parallel to each other to extend the aperture of the interferometer. The method is applied to measure the beam coalignment of a prototype Triple Mirror Assembly of the GRACE Follow-On Laser Ranging Interferometer, a future satellite-to-satellite tracking device for Earth gravimetry.

View Article and Find Full Text PDF

Controlled self-organized growth of vertically aligned carbon nanocone arrays in a radio frequency inductively coupled plasma-based process is studied. The experiments have demonstrated that the gaps between the nanocones, density of the nanocone array, and the shape of the nanocones can be effectively controlled by the process parameters such as gas composition (hydrogen content) and electrical bias applied to the substrate. Optical measurements have demonstrated lower reflectance of the nanocone array as compared with a bare Si wafer, thus evidencing their potential for the use in optical devices.

View Article and Find Full Text PDF

We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement.

View Article and Find Full Text PDF

A 300-mm-aperture digital phase-shifting Fizeau interferometer has been developed in-house for precision metrology of optical components fabricated by the optical workshop at Telecommunications and Industrial Physics, Commonwealth Scientific and Industrial Research Organization. We describe the procedures used in the calibration of the instrument. A reference data file representing the deviations from flatness of the reference surface is generated, measurement uncertainty estimated, and aberrations in the instrument assessed.

View Article and Find Full Text PDF

The manufacture and testing of high-precision optical surfaces for the Laser Interferometer Gravitational Wave Observatory is described. Through the use of carefully shaped polishing laps made of a nondeformable polymer material coated on a rigid base, surfaces 250 mm in diameter with radii of curvature between 7 and 15 km were polished to an accuracy of several hundred meters in the curvature and with low values of waviness and microroughness. Metrology instrumentation used to measure the optical finish included a large-aperture digital interferometer calibrated to nanometer-level accuracy for measurements of curvature, astigmatism, and waviness and an interference microscope for measurements of microroughness.

View Article and Find Full Text PDF

We describe an electronic speckle-pattern interferometry system for analyzing addition fringes generated by the transient deformation of a test object. The system is based on a frequency-doubled twin Nd:YAG laser emitting dual pulses at a TV camera field rate (50 Hz). The main advance has been the automatic, quantitative analysis of dual-pulse addition electronic speckle-pattern interferometry data by the introduction of carrier fringes and the application of Fourier methods.

View Article and Find Full Text PDF

The dynamic range of a Ronchi test with a phase-shifted sinusoidal grating was investigated theoretically and experimentally. As the number of fringes in a Ronchi interferogram increases, the fringe visibility decreases, which results in a decrease of phase-measurement resolution. It is shown that in order to optimize the dynamic range the effective wavelength of the interferogram should be tuned to the characteristic wavelength of the object wave front.

View Article and Find Full Text PDF

The resolution of an angle-scanning technique for measuring transparent optical wafers is analyzed, and it is shown both theoretically and experimentally that subnanometer resolution can be readily achieved. Data are acquired simultaneously over the whole area of the wafer, producing two-dimensional thickness variation maps in as little as 10 s. Repeatabilities of 0.

View Article and Find Full Text PDF

The effect of thickness uniformity and distortion on the performance of large-aperture Fabry-Perot etalon filters is investigated. It is shown that for etalons currently being used for solar observation it is important to consider the effect of distortion due to mounting and to gravity when in use. It is further shown that the effects of distortion can be largely avoided by operating the etalon at or near normal incidence.

View Article and Find Full Text PDF

There is an urgent need for detection technologies that enable accurate and precise quantification of solutions containing small organic molecules in a manner that is rapid, cheap, non-labor-intensive, readily automated, and without a requirement for specific analyte standards. We provide a theoretical analysis that predicts that the logarithmic nature of the working domain of the evaporative light-scattering detector (ELSD) will normally bias toward underestimation of chromatographically resolved impurities, resulting in an overestimation of analyte purity. This analysis is confirmed by experiments with flow injection analysis (FIA) and gradient reversed-phase high performance liquid chromatography (RP-HPLC).

View Article and Find Full Text PDF

Interferometric measurement techniques such as holographic interferometry and electronic speckle-pattern interferometry are valuable for measuring the deformation of objects. Conventional theoretical models of deformation measurement assume collimated illumination and telecentric imaging, which are usually only practical for small objects. Large objects often require divergent illumination, for which the models are valid only when the object is planar, and then only in the paraxial region.

View Article and Find Full Text PDF

Utilizing a pharmacophoric model of binding of 3-(2-aminoethyl)indoles to 5HT(1B/1D) receptors, we identified the 3-aminocyclobutyl group as a potential ethylamine isostere. A novel multidimensional chemometric approach was used to predict the intrinsic activity (degree of agonism) at the receptor. A qualitative model for pharmacokinetic properties was then used to guide the synthesis toward molecules likely to have oral bioavailability in humans.

View Article and Find Full Text PDF

The measurement of three-dimensional displacement by electronic speckle-pattern interferometry with three object beams and one reference beam is presented. Multiple interference fringes corresponding to different sensitivity vectors are recorded in a single interferogram and separated by means of the Fourier transform method to give three components of displacement. The relationship between the ratio of the speckle size to the pixel size of a TV camera and the measurement error is investigated experimentally and compared with the research of others.

View Article and Find Full Text PDF