In plants, the timely degeneration of tapetal cells is essential for providing nutrients and other substances to support pollen development. Rapid alkalinization factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth, as well as defense against biotic and abiotic stresses. However, the functions of most of them remain unknown, while no RALF has been reported to involve tapetum degeneration.
View Article and Find Full Text PDFPharmaceuticals (Basel)
April 2023
Neuroprotective drugs to protect the brain against cerebral ischemia and reperfusion (I/R) injury are urgently needed. Mammalian cell-produced recombinant human erythropoietin (rhuEPO) has been demonstrated to have excellent neuroprotective functions in preclinical studies, but its neuroprotective properties could not be consistently translated in clinical trials. The clinical failure of rhuEPO was thought to be mainly due to its erythropoietic activity-associated side effects.
View Article and Find Full Text PDFPathophysiology associated with Huntington's disease (HD) has been studied extensively in various cell and animal models since the 1993 discovery of the mutant huntingtin (mHtt) with abnormally expanded polyglutamine (polyQ) tracts as the causative factor. However, the sequence of early pathophysiological events leading to HD still remains elusive. To gain new insights into the early polyQ-induced pathogenic events, we expressed Htt exon1 (Htt) with a normal (21), or an extended (42 or 63) number of polyQ in tobacco plants.
View Article and Find Full Text PDFGlucose is the essential and almost exclusive metabolic fuel for the brain. Ischemic stroke caused by a blockage in one or more cerebral arteries quickly leads to a lack of regional cerebral blood supply resulting in severe glucose deprivation with subsequent induction of cellular homeostasis disturbance and eventual neuronal death. To make up ischemia-mediated adenosine 5'-triphosphate depletion, glucose in the ischemic penumbra area rapidly enters anaerobic metabolism to produce glycolytic adenosine 5'-triphosphate for cell survival.
View Article and Find Full Text PDFMammalian cell-produced recombinant human erythropoietin (rhuEPO) has been shown to be a multimodal neuroprotectant targeting an array of key pathological mechanisms in experimental stroke models. However, the rhuEPO clinical trials were terminated due to increased risk of thrombosis, largely ascribed to its erythropoietic function. We recently took advantage of a plant-based expression system lacking sialylation capacity to produce asialo-rhuEPO, a rhuEPO derivative without sialic acid residues.
View Article and Find Full Text PDFChloroplasts are organelles responsible for chlorophyll biosynthesis, photosynthesis, and biosynthesis of many metabolites, which are one of key targets for crop improvement. Elucidating and engineering genes involved in chloroplast development are important approaches for studying chloroplast functions as well as developing new crops. In this study, we report a long-lived albino mutant derived from a popular ornamental plant 'Golden Pothos' which could be used as a model for analyzing the function of genes involved in chloroplast development and generating colorful plants.
View Article and Find Full Text PDFUnderstanding proteomic changes in the ischemic penumbra are crucial to rescue those salvageable cells and reduce the damage of an ischemic stroke. Since the penumbra region is dynamic with heterogeneous cells/tissues, tissue sampling from animal models of stroke for the molecular study is a challenge. In this study, cultured hippocampal HT22 cells under hypoxia treatment for 17.
View Article and Find Full Text PDFPlant-based expression system has many potential advantages to produce biopharmaceuticals, but plants cannot be directly used to express human glycoproteins because of their differences in glycosylation abilities from mammals. To exploit plant-based expression system for producing recombinant human erythropoietin (rhuEPO), we glycoengineered tobacco plants by stably introducing seven to eight mammalian genes including a target human EPO into tobacco in order to generate capacities for β1,4-galactosylation, bisecting N-acetylglucosamine (GlcNAc) and sialylation. Wild type human β1,4-galactosyltransferase gene (GalT) or a chimeric GalT gene (ST/GalT) was co-expressed to produce rhuEPO bearing β1,4-galactose-extended N-glycan chains as well as compare their β1,4-galactosylation efficiencies.
View Article and Find Full Text PDFBackground: Recombinant human erythropoietin (rhuEPO) and asialoerythropoietin (asialo-rhuEPO) are cardioprotective. However, the protective effects of rhuEPO could not be translated into clinical practice because of its hematopoiesis-associated side effects while non-erythropoietic asialo-rhuEPO is unavailable in large quantities for clinical studies. This study was designed to investigate the cardiomyocyte protective potential of plant-produced asialo-rhuEPO (asialo-rhuEPO) against staurosporine (STS)-induced injury in HL-1 murine cardiomyocytes and identify cellular pathway(s) responsible for its cardioprotection.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies (mAbs) have evolved into an important class of effective medicine in treatment of various diseases. Since the antibody molecule consists of two identical heavy chains (HC) and two light chains (LC), each chain encoded by two different genes, their expressions at similar levels are critical for efficient assembly of functional recombinant mAbs. Although the plant-based expression system has been tested to produce fully assembled recombinant mAbs, coordinately expressing HC and LC at similar levels in a transgenic plant remains a challenge.
View Article and Find Full Text PDFPancreatic beta-cell death adversely contributes to the progression of both type I and II diabetes by undermining beta-cell mass and subsequently diminishing endogenous insulin production. Therapeutics to impede or even reverse the apoptosis and dysfunction of beta-cells are urgently needed. Asialo-rhuEPO, an enzymatically desialylated form of recombinant human erythropoietin (rhuEPO), has been shown to have cardioprotective and neuroprotective functions but with no adverse effects like that of sialylated rhuEPO.
View Article and Find Full Text PDFVariegated 'Marble Queen' (Epipremnum aureum) plant has white (VMW) and green (VMG) sectors within the same leaf. The white sector cells containing undifferentiated chloroplasts are viable, but the underlying mechanism for their survival and whether these white cells would use any metabolites as signal molecules to communicate with the nucleus for maintaining their viability remain unclear. We analyzed and compared phytohormone levels with their precursors produced in chloroplasts between VMW and VMG, and further compared their transcriptomes to understand the consequences related to the observed elevated 12-oxo phytodienoic acid (OPDA), which was 9-fold higher in VMW than VMG.
View Article and Find Full Text PDFEpipremnum aureum is an extremely popular houseplant belonging to the Araceae family of angiosperms, but it does not flower either in the wild or under cultivation. We uncovered the potential causes of its shy-flowering nature by building the transcriptome using next-generation sequencing and identifying floral-related genes that are differentially expressed between vertical growth (VG, adult) and horizontal growth (HG, juvenile) plants. Transcripts of the gibberellin (GA) biosynthetic gene EaGA3ox1 and GA-responsive floral meristem identity gene EaLFY were absent in both VG and HG plants, suggesting that a deficiency of bioactive GAs may be responsible for its shy-flowering nature.
View Article and Find Full Text PDFC -terminally fused Strep -tag II is removed from rhuEPO expressed in tobacco plants. The finding suggests that direct fusion of purification tags at the C -terminus of rhuEPO should be avoided. Asialo-erythropoietin (asialo-EPO), a desialylated form of EPO, is a potent tissue-protective agent.
View Article and Find Full Text PDFAsialoerythropoietin (asialo-EPO) is a desialylated form of human glycoprotein hormone erythropoietin (EPO), which has been reported to be neuro-, cardio-, and renoprotective in animal models of organ injuries. Since the current method of production of asialo-EPO from mammalian cell-made recombinant human EPO (rhuEPO(M)) by enzymatic desialylation is not commercially viable, we and others used plant-based expression systems to produce recombinant human asialo-EPO (asialo-rhuEPO(P)). Despite achieving high expression levels in plants, its purification from plant extracts has remained a greater challenge, which has prevented studying its tissue-protective effects and translating it into clinical practice.
View Article and Find Full Text PDFBacteria can reduce toxic selenite into less toxic, elemental selenium (Se(0)), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown.
View Article and Find Full Text PDFEaF82, a gene identified in previous studies of the variegated plant Epipremnum aureum, exhibited a unique expression pattern with greater transcript abundance in yellow sectors than green sectors of variegated leaves, but lower abundance in regenerated pale yellow plants than in green plants derived from leaf tissue culture. Studies of its full-length cDNA and promoter region revealed two members with only the EaF82a expressed. Immunoblotting confirmed that EaF82a encodes a 12 kDa protein and its accumulation consistent with its gene expression patterns in different color tissues.
View Article and Find Full Text PDFAsialo-erythropoietin, a desialylated form of human erythropoietin (EPO) lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPO(M)) by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO.
View Article and Find Full Text PDFMethylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites.
View Article and Find Full Text PDFUnlabelled: Erythropoietin (EPO) is a glycoprotein hormone that displays both hematopoietic and tissue-protective functions by binding to two distinct receptors. Recombinant human EPO (rhuEPO) is widely used for the treatment of anemia, but its use for tissue protection is limited because of potentially harmful increases in red blood cell mass when higher doses of rhuEPO are used. Recent studies have shown that asialoerythropoietin (asialo-rhuEPO), a desialylated form of rhuEPO, lacks hematopoietic activity, but retains cytoprotective activity.
View Article and Find Full Text PDFPlants with capacity to accumulate high levels of selenium (Se) are desired for phytoremediation and biofortification. Plants of genus Astragalus accumulate and tolerate high levels of Se, but their slow growth, low biomass and non-edible properties limit their direct utilization. Genetic engineering may be an alternative way to produce edible or high biomass Se-accumulating plants.
View Article and Find Full Text PDFMaize beta-glucosidase aggregating factor (BGAF) and its homolog Sorghum Lectin (SL) are modular proteins consisting of an N-terminal dirigent domain and a C-terminal jacalin-related lectin (JRL) domain. BGAF is a polyspecific lectin with a monosaccharide preference for galactose, whereas SL displays preference for GalNAc. Here, we report that deletion of the N-terminal dirigent domain in the above lectins dramatically changes their sugar-specificities.
View Article and Find Full Text PDFBeta-glucosidases (Glu1 and Glu2) in maize specifically interact with a lectin called beta-glucosidase aggregating factor (BGAF). We have shown that the N-terminal (Glu(50)-Val(145)) and the C-terminal (Phe(466)-Ala(512)) regions of maize Glu1 are involved in binding to BGAF. Sequence comparison between sorghum beta-glucosidases (dhurrinases, which do not bind to BGAF) and maize beta-glucosidases, and the 3D-structure of Glu1 suggested that the BGAF-binding site on Glu1 is much smaller than predicted previously.
View Article and Find Full Text PDFIn certain maize genotypes (nulls), beta-glucosidase specifically interacts with a chimeric lectin called beta-glucosidase aggregating factor (BGAF), resulting in high molecular weight complexes. Previously, we showed that three regions (S1-T29, E50-N127, and F466-A512) on the maize beta-glucosidase isozyme Glu1 are involved in interaction and aggregation with BGAF. Recently, we found that the peptide span I72-T82 within E50-N127 is essential and sufficient for BGAF binding, whereas the S1-T29 and F466-A512 regions are required for formation of large complexes.
View Article and Find Full Text PDF