We have previously shown that PM exposure causes oxidative stress and reduces Nrf2 protein levels, and SKQ1 pre-treatment protects against this damage in human corneal epithelial cells (HCE-2). The current study focuses on uncovering the mechanisms underlying acute PM toxicity and SKQ1-mediated protection. HCE-2 were pre-treated with SKQ1 and then exposed to 100 μg/mL PM.
View Article and Find Full Text PDFThis study tests the mechanism(s) of glycyrrhizin (GLY) protection against keratitis. Female C57BL/6 (B6), TLR4 knockout (TLR4KO), myeloid specific TLR4KO (mTLR4KO), their wildtype (WT) littermates, and TLR9 knockout (TLR9KO) mice were infected with KEI 1025 and treated with GLY or PBS onto the cornea after infection. Clinical scores, photography with a slit lamp, RT-PCR and ELISA were used.
View Article and Find Full Text PDFPMN are critical to innate immunity and are fundamental to antibacterial defense. To localize to sites of infection, PMN possess receptors that detect chemoattractant stimuli elicited at the site, such as chemokines, complement split products, or bioactive lipids. Signaling through these receptors stimulates chemotaxis toward the site of infection but also activates a number of biochemical processes, with the result that PMN kill invading bacteria.
View Article and Find Full Text PDFDextran sodium sulfate (DSS)-induced colitis in mice is characterized by polymorphonuclear neutrophil (PMN) infiltration into the colonic mucosa and lumen. The mechanism by which this occurs is unclear. To begin to understand the mechanism, we determined the role of the PMN chemokine receptor, CXCR2, in DSS-induced colitis by using CXCR2(-/-) mice or by neutralizing CXCR2.
View Article and Find Full Text PDFJpn J Infect Dis
November 2007
The prevalence of Mycoplasma pneumoniae among HIV-positive patients with community-acquired pneumonia (CAP) remains unclear. We investigated 300 HIV-positive adults (200 with CAP and 100 with no respiratory illness) and 75 HIV-negative adults with CAP for the prevalence of respiratory pathogens using culture and serology. A growth inhibition test was employed to confirm the isolates of M.
View Article and Find Full Text PDFBackground: The pathophysiological link between increased blood concentrations of factors responsible for the derangement and erythrocyte membrane functions in chronic renal failure (CRF) patients are not thoroughly elucidated. We studied the erythrocyte characteristics and phospholipid asymmetry loss in CRF patients with different grades of uremia and also examined the involvement of intracellular free Ca(2+) in early events of apoptosis in uremic erythrocytes.
Methods: The studied population consisted of 90, age and sex matched control subjects (Group I) and 238 CRF cases divided into 3 groups (Group II, III and IV) according to urea concentrations and complexity of secondary complications.
The assumption of oxidative stress as a mechanism in oxalate induced renal damage suggests that antioxidants might play a beneficial role against oxalate toxicity. An in vivo model was used to investigate the effect of C-phycocyanin (from aquatic micro algae; Spirulina spp.), a known antioxidant, against calcium oxalate urolithiasis.
View Article and Find Full Text PDFBackground: High Spirulina diet is a potential risk factor for nephrolithiasis since it has the capacity to increase urinary oxalate and uric acid level, facilitating lithogenesis. Our aim was to identify the effect of Spirulina diet during hyperoxaluric condition in Wistar albino rats.
Methods: The animals were divided into four groups: control (Gl, n=6); ethylene glycol (EG) induced (G2, n=6); EG+Spirulina (G3, n=6); Spirulina alone (G4, n=6).
Background: C-phycocyanin, a biliprotein pigment found in some blue green algae (Spirulina platensis) with nutritional and medicinal properties, was investigated for its efficacy on sodium oxalate-induced nephrotoxicity in experimentally induced urolithic rats.
Methods: Male Wistar rats were divided into four groups. Hyperoxaluria was induced in two of these groups by intraperitoneal infusion of sodium oxalate (70 mg/kg), and a pretreatment of phycocyanin (100 mg/kg) as a single oral dosage was given to one of these groups by 1 h prior to sodium oxalate infusion challenges.
Oxalate induced renal calculi formation and the associated renal injury is thought to be caused by free radical mediated mechanisms. An in vivo model was used to investigate the effect of phycocyanin (from Spirulina platensis), a known antioxidant, against calcium oxalate urolithiasis. Male Wistar rats were divided into four groups.
View Article and Find Full Text PDF