This paper presents a design of multiple input multiple output (MIMO) antenna array for 5G millimeter-wave (mm-wave) communication systems. The proposed MIMO configuration consists of a two antenna arrays combination. Each antenna array consists of four elements which are arranged in an even manner, while two arrays are then assembled with a 90-degree shift with respect to each other.
View Article and Find Full Text PDFTwo-dimensional metamaterials, consisting of an array of ultrathin building blocks, offer a versatile and compact platform for tailoring the properties of the electromagnetic waves. Such flat metasurfaces provide a unique solution to circumvent the limitations imposed by their three-dimensional counterparts. Albeit several successful demonstrations of metasurfaces have been presented in the visible, infrared, and terahertz regimes, etc.
View Article and Find Full Text PDFWe demonstrate transmission-based all-dielectric, highly efficient (≈73.4%) and polarization-insensitive meta-axicons (for the visible wavelength of 633 nm) to generate zero and higher order Bessel beams without using additional components. The Bessel beams, owing to their diverse applications and non-diffractive properties, attract great interest from the scientific community.
View Article and Find Full Text PDFCorrection for 'Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides' by Nasir Mahmood et al., Nanoscale, 2018, 10, 18323-18330.
View Article and Find Full Text PDFMetasurfaces, two dimensional (2D) metamaterials comprised of subwavelength features, can be used to tailor the amplitude, phase and polarisation of an incident electromagnetic wave propagating at an interface. Though many novel metasurfaces have been explored, the hunt for cost-effective, highly efficient, low-loss and polarisation insensitive applications is ongoing. In this work, we utilise an efficient and cost-effective dielectric material, hydrogenated amorphous silicon (a-Si:H), to create a ultra-thin transmissive surface that simultaneously controls phase.
View Article and Find Full Text PDF