Purpose: To evaluate the impact of technically challenging variants on the implementation, validation, and diagnostic yield of commonly used clinical genetic tests. Such variants include large indels, small copy-number variants (CNVs), complex alterations, and variants in low-complexity or segmentally duplicated regions.
Methods: An interlaboratory pilot study used synthetic specimens to assess detection of challenging variant types by various next-generation sequencing (NGS)-based workflows.
Invariant NKT (iNKT) cells regulate early immune responses to infections, in part because of their rapid release of IFN-gamma and IL-4. iNKT cells are proposed to reduce the severity of Lyme disease following Borrelia burgdorferi infection. Unlike conventional T cells, iNKT cells express an invariant alphabeta TCR that recognizes lipids bound to the MHC class I-like molecule, CD1d.
View Article and Find Full Text PDFSyphilis, a sexually transmitted infection caused by the spirochetal bacterium Treponema pallidum, remains a global public health problem. T. pallidum is believed to be an extracellular pathogen and, as such, the identification of T.
View Article and Find Full Text PDFThe Tp34 (TP0971) membrane lipoprotein of Treponema pallidum, an obligate human pathogen and the agent of syphilis, was previously reported to have lactoferrin binding properties. Given the non-cultivatable nature of T. pallidum, a structure-to-function approach was pursued to clarify further potential relationships between the Tp34 structural and biochemical properties and its propensity to bind human lactoferrin.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2006
Enteropathogenic Escherichia coli (EPEC) virulence requires a type III secretion system (TTSS) to deliver effector molecules in host cells. Although the TTSS is crucial to EPEC pathogenesis, its function in EPEC-induced inflammation is not known. The aim of this study was to investigate the role of the TTSS in EPEC-induced inflammation.
View Article and Find Full Text PDFEspG, a secreted effector of enteropathogenic Escherichia coli (EPEC), as well as its homologue Orf3, has been shown to disrupt microtubules (MTs) in fibroblasts and non-polarized epithelial cells. The roles of MTs and the effects of MT disruption in these cell types differ significantly. The aim of this study was to investigate the effects of EspG on polarized, host target intestinal epithelial cells.
View Article and Find Full Text PDFBackground & Aims: Enteropathogenic Escherichia coli and enterohemorrhagic E. coli harbor highly homologous pathogenicity islands yet show key differences in their mechanisms of action. Both disrupt host intestinal epithelial tight junctions, but the effects of enteropathogenic E.
View Article and Find Full Text PDFAfter the chromophore's isomerization in the initial photochemical event in bacteriorhodopsin, the primary photoproduct K makes a thermal transition to the L intermediate, which prepares the pigment for Schiff base deprotonation in the following step (L --> M). Substantial changes in the hydrogen bonding of internal water molecules take place upon L formation. Some of these mobile waters are probably involved in changing the pK of the Schiff base and perhaps that of the proton acceptor Asp85 to allow proton movement [Maeda, A.
View Article and Find Full Text PDFTwo functional input pathways for protons have been characterized in the heme-copper oxidases: the D-channel and the K-channel. These two proton-conducting channels have different functional roles and have been defined both by X-ray crystallography and by the characterization of site-directed mutants. Whereas the entrance of the D-channel is well-defined as D132(I) (subunit I; Rhodobacter sphaeroides numbering), the entrance of the K-channel has not been clearly defined.
View Article and Find Full Text PDFIn the photocycle of bacteriorhodopsin (BR), the first proton movement, from the Schiff base to Asp85, occurs after the formation of the L intermediate. In L, the C [double bond] N bond of the Schiff base is strained, and the nitrogen interacts strongly with its counterion. The present study seeks to detect the interaction of internal water molecules with the Schiff base in L using difference FTIR spectroscopy at 170 K.
View Article and Find Full Text PDFWe have used cryogenic difference FTIR and time-resolved step-scan Fourier transform infrared (TR-FTIR) spectroscopies to explore the redox-linked proton-pumping mechanism of heme-copper respiratory oxidases. These techniques are used to probe the structure and dynamics of the heme a(3)-Cu(B) binuclear center and the coupled protein structures in response to the photodissociation of CO from heme Fe and its subsequent binding to and dissociation from Cu(B). Previous cryogenic (80 K) FTIR CO photodissociation difference results were obtained for cytochrome bo(3), the ubiquinol oxidase of Escherichia coli [Puustinen, A.
View Article and Find Full Text PDF