The microstructure of the electrodes in lithium-ion batteries (LIBs) strongly affects their gravimetric and volumetric energy and power as well as their cycle life. Especially, the effect of the microstructure in the case of next-generation Ni-rich cathode materials has not yet been investigated. A comprehensive understanding of the calendering process is therefore necessary to find an optimal level of the electrode microstructure that can enhance lithium-ion transportation, minimize plastic deformation, and improve conductivity.
View Article and Find Full Text PDFNon-thermal helium atmospheric pressure plasma jet treatment is applied to the surface activation of porous TiO nanoparticle assemblies. Treatment conditions such as the working distance of the plasma discharge, helium gas flow rate, and treatment time are optimized for effective removal of contaminants from the assembly surface. Laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) is applied to detect trace amounts of contaminants on assembly surfaces.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.