Publications by authors named "Farjas J"

The cost-effective synthesis of a series of metal propionate powders (copper, yttrium, barium, samarium, gadolinium, and ytterbium) is developed through single chemical reactions resulting in five novel crystalline forms. These complexes are valuable precursors for the preparation of epitaxial REBaCuO (REBCO) superconducting films (here, RE = Y, Sm, Gd, and Yb) through the innovative transient liquid-assisted growth (TLAG) process based on chemical solution deposition (CSD). TLAG-CSD shows impressive results with YBaCuO (YBCO), obtaining critical current densities of 2.

View Article and Find Full Text PDF

Research involved in developing alternative energy sources has become a necessity to face global warming. In this context, superconductivity is an appealing solution to enhance clean electrical energy provided that lower production costs can be attained. By implementation of chemical solution deposition techniques and high-throughput growth methods, low-cost nanostructured epitaxial cuprate superconductors are timely candidates.

View Article and Find Full Text PDF

Transient liquid assisted growth (TLAG) is an ultrafast non-equilibrium growth process mainly governed by kinetic parameters, which are only accessible through fast in situ characterizations. In situ synchrotron X-ray diffraction (XRD) analysis and in situ electrical resistivity measurements are used to derive kinetic diagrams of YBa Cu O (YBCO) superconducting films prepared via TLAG and to reveal the unique peculiarities of the process. In particular, diagrams for the phase evolution and the YBCO growth rates have been built for the two TLAG routes.

View Article and Find Full Text PDF

We have found a way for penetrating the space of the dynamical systems toward systems of arbitrary dimension exhibiting the nonlinear mixing of a large number of oscillation modes through which extraordinarily complex time evolutions may arise. The system design is based on assuring the occurrence of a number of Hopf bifurcations in a set of fixed points of a relatively generic system of ordinary differential equations, in which the main peculiarity is that the nonlinearities appear through functions of a linear combination of the system variables. The paper outlines the design procedure and presents a selection of numerical simulations with a variety of designed systems whose dynamical behaviors are really rich and full of unknown features.

View Article and Find Full Text PDF

The achievement of high growth rates in YBaCuO epitaxial high-temperature superconducting films has become strategic to enable high-throughput manufacturing of long length coated conductors for energy and large magnet applications. We report on a transient liquid assisted growth process capable of achieving ultrafast growth rates (100 nm s) and high critical current densities (5 MA cm at 77 K). This is based on the kinetic preference of Ba-Cu-O to form transient liquids prior to crystalline thermodynamic equilibrium phases, and as such is a non-equilibrium approach.

View Article and Find Full Text PDF

The surface chemistry of nanoparticles is the key factor to control and predict their interactions with molecules, ions, other particles, other materials, or substrates, determining key properties such as nanoparticle stability or biocompatibility. In consequence, the development of new techniques or modification of classical techniques to characterize nanoparticle surfaces is of utmost importance. Here, a classical analysis technique, thermally evolved gas analysis - mass spectrometry (EGA-MS), is employed to obtain an image of the nanoparticle-solvent interface, unraveling the molecules present on the surface.

View Article and Find Full Text PDF

We present a set of phase-space portraits illustrating the extraordinary oscillatory possibilities of the dynamical systems through the so-called generalized Landau scenario. In its simplest form the scenario develops in N dimensions around a saddle-node pair of fixed points experiencing successive Hopf bifurcations up to exhausting their stable manifolds and generating N-1 different limit cycles. The oscillation modes associated with these cycles extend over a wide phase-space region by mixing ones within the others and by affecting both the transient trajectories and the periodic orbits themselves.

View Article and Find Full Text PDF

The crystallization enthalpy measured in a large series of amorphous silicon (a-Si) materials varies within a factor of 2 from sample to sample (Kail et al 2011 Phys. Status Solidi RRL 5 361). According to the classical theory of nucleation, this variation should produce large differences in the crystallization kinetics leading to crystallization temperatures and activation energies exceeding 550 °C and 1.

View Article and Find Full Text PDF

A domino process is described combining an ene reaction between two alkynes and a Diels-Alder cycloaddition of the vinylallene formed. The process accounts for the thermally induced cycloisomerization of macrocyclic triynes and enediynes to give fused tetracycles in a stereoselective manner.

View Article and Find Full Text PDF

Thermal crystallization experiments have been carried out on nanocrystalline silicon films. From the thermal activation of the process, it is concluded that the amorphous phase crystallizes by solid phase epitaxy around the preexisting crystallites. However, and in contrast with the usual epitaxial crystallization of wafers partially amorphized by ion implantation or ball-milled powders, the epitaxial growth is inhibited for most of the amorphous-crystalline interface.

View Article and Find Full Text PDF

We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables.

View Article and Find Full Text PDF
Speed of wave-front solutions to hyperbolic reaction-diffusion equations.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

November 1999

The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds.

View Article and Find Full Text PDF

We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which self-similarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures.

View Article and Find Full Text PDF