Publications by authors named "Fariza Tahi"

Predicting the 3D structure of RNA is a significant challenge despite ongoing advancements in the field. Although AlphaFold has successfully addressed this problem for proteins, RNA structure prediction raises difficulties due to the fundamental differences between proteins and RNA, which hinder its direct adaptation. The latest release of AlphaFold, AlphaFold3, has broadened its scope to include multiple different molecules such as DNA, ligands and RNA.

View Article and Find Full Text PDF

Motivation: Predicting the 3D structure of RNA is an ongoing challenge that has yet to be completely addressed despite continuous advancements. RNA 3D structures rely on distances between residues and base interactions but also backbone torsional angles. Knowing the torsional angles for each residue could help reconstruct its global folding, which is what we tackle in this work.

View Article and Find Full Text PDF

The involvement of non-coding RNAs in biological processes and diseases has made the exploration of their functions crucial. Most non-coding RNAs have yet to be studied, creating the need for methods that can rapidly classify large sets of non-coding RNAs into functional groups, or classes. In recent years, the success of deep learning in various domains led to its application to non-coding RNA classification.

View Article and Find Full Text PDF

RNAs are essential molecules involved in numerous biological functions. Understanding RNA functions requires the knowledge of their 3D structures. Computational methods have been developed for over two decades to predict the 3D conformations from RNA sequences.

View Article and Find Full Text PDF

RNA is a complex macromolecule that plays central roles in the cell. While it is well known that its structure is directly related to its functions, understanding and predicting RNA structures is challenging. Assessing the real or predictive quality of a structure is also at stake with the complex 3D possible conformations of RNAs.

View Article and Find Full Text PDF

RNAs can interact with other molecules in their environment, such as ions, proteins or other RNAs, to form complexes with important biological roles. The prediction of the structure of these complexes is therefore an important issue and a difficult task. We are interested in RNA complexes composed of several (more than two) interacting RNAs.

View Article and Find Full Text PDF

In the sea of data generated daily, unlabeled samples greatly outnumber labeled ones. This is due to the fact that, in many application areas, labels are scarce or hard to obtain. In addition, unlabeled samples might belong to new classes that are not available in the label set associated with data.

View Article and Find Full Text PDF

Recent advances have shown that some biologically active non-coding RNAs (ncRNAs) are actually translated into polypeptides that have a physiological function as well. This paradigm shift requires adapted computational methods to predict this new class of 'bifunctional RNAs'. Previously, we developed IRSOM, an open-source algorithm to classify non-coding and coding RNAs.

View Article and Find Full Text PDF

Motivation: Applied research in machine learning progresses faster when a clean dataset is available and ready to use. Several datasets have been proposed and released over the years for specific tasks such as image classification, speech-recognition and more recently for protein structure prediction. However, for the fundamental problem of RNA structure prediction, information is spread between several databases depending on the level we are interested in: sequence, secondary structure, 3D structure or interactions with other macromolecules.

View Article and Find Full Text PDF

Motivation: RNA loops have been modelled and clustered from solved 3D structures into ordered collections of recurrent non-canonical interactions called 'RNA modules', available in databases. This work explores what information from such modules can be used to improve secondary structure prediction. We propose a bi-objective method for predicting RNA secondary structures by minimizing both an energy-based and a knowledge-based potential.

View Article and Find Full Text PDF

Background: RNAs can interact and form complexes, which have various biological roles. The secondary structure prediction of those complexes is a first step towards the identification of their 3D structure. We propose an original approach that takes advantage of the high number of RNA secondary structure and RNA-RNA interaction prediction tools.

View Article and Find Full Text PDF

Motivation: Non-coding RNAs (ncRNAs) play important roles in many biological processes and are involved in many diseases. Their identification is an important task, and many tools exist in the literature for this purpose. However, almost all of them are focused on the discrimination of coding and ncRNAs without giving more biological insight.

View Article and Find Full Text PDF

Background: RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure.

View Article and Find Full Text PDF

Many computational tools have been proposed during the two last decades for predicting piRNAs, which are molecules with important role in post-transcriptional gene regulation. However, these tools are mostly based on only one feature that is generally related to the sequence. Discoveries in the domain of piRNAs are still in their beginning stages, and recent publications have shown many new properties.

View Article and Find Full Text PDF

The secondary structure of an RNA molecule represents the base-pairing interactions within the molecule and fundamentally determines its overall structure. In this chapter, we overview the main approaches and existing tools for predicting RNA secondary structures, as well as methods for identifying noncoding RNAs from genomic sequences or RNA sequencing data. We then focus on the identification of a well-known class of small noncoding RNAs, namely microRNAs, which play very important roles in many biological processes through regulating post-transcriptionally the expression of genes and which dysregulation has been shown to be involved in several human diseases.

View Article and Find Full Text PDF

Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs.

View Article and Find Full Text PDF

Identification of microRNAs (miRNAs) is an important step toward understanding post-transcriptional gene regulation and miRNA-related pathology. Difficulties in identifying miRNAs through experimental techniques combined with the huge amount of data from new sequencing technologies have made in silico discrimination of bona fide miRNA precursors from non-miRNA hairpin-like structures an important topic in bioinformatics. Among various techniques developed for this classification problem, machine learning approaches have proved to be the most promising.

View Article and Find Full Text PDF

Motivation: Piwi-interacting RNA (piRNA) is the most recently discovered and the least investigated class of Argonaute/Piwi protein-interacting small non-coding RNAs. The piRNAs are mostly known to be involved in protecting the genome from invasive transposable elements. But recent discoveries suggest their involvement in the pathophysiology of diseases, such as cancer.

View Article and Find Full Text PDF

Background: Inverted repeat genes encode precursor RNAs characterized by hairpin structures. These RNA hairpins are then metabolized by biosynthetic pathways to produce functional small RNAs. In eukaryotic genomes, short non-autonomous transposable elements can have similar size and hairpin structures as non-coding precursor RNAs.

View Article and Find Full Text PDF

miRNAs are small non coding RNA structures which play important roles in biological processes. Finding miRNA precursors in genomes is therefore an important task, where computational methods are required. The goal of these methods is to select potential pre-miRNAs which could be validated by experimental methods.

View Article and Find Full Text PDF

Background: Most known eukaryotic genomes contain mobile copied elements called transposable elements. In some species, these elements account for the majority of the genome sequence. They have been subject to many mutations and other genomic events (copies, deletions, captures) during transposition.

View Article and Find Full Text PDF

Predicting RNA secondary structures is a very important task, and continues to be a challenging problem, even though several methods and algorithms are proposed in the literature. In this article, we propose an algorithm called Tfold, for predicting non-coding RNA secondary structures. Tfold takes as input a RNA sequence for which the secondary structure is searched and a set of aligned homologous sequences.

View Article and Find Full Text PDF

We present the current state of the development of the SAPHIR project (a Systems Approach for PHysiological Integration of Renal, cardiac and respiratory function). The aim is to provide an open-source multi-resolution modelling environment that will permit, at a practical level, a plug-and-play construction of integrated systems models using lumped-parameter components at the organ/tissue level while also allowing focus on cellular- or molecular-level detailed sub-models embedded in the larger core model. Thus, an in silico exploration of gene-to-organ-to-organism scenarios will be possible, while keeping computation time manageable.

View Article and Find Full Text PDF

Background: The secondary structure of an RNA must be known before the relationship between its structure and function can be determined. One way to predict the secondary structure of an RNA is to identify covarying residues that maintain the pairings (Watson-Crick, Wobble and non-canonical pairings). This "comparative approach" consists of identifying mutations from homologous sequence alignments.

View Article and Find Full Text PDF

We present progress on a comprehensive, modular, interactive modeling environment centered on overall regulation of blood pressure and body fluid homeostasis. We call the project SAPHIR, for "a Systems Approach for PHysiological Integration of Renal, cardiac, and respiratory functions". The project uses state-of-the-art multi-scale simulation methods.

View Article and Find Full Text PDF