Objective: Physical treatment modalities, such as ablative fractional laser (AFL), electrocautery, and cryotherapy, are extensively used in the field of dermatology. This study aimed to characterize the short-term innate and adaptive immune responses induced by AFL compared with heat- and cold-based procedures.
Materials And Methods: Innate (CD11bLy6G neutrophils) and adaptive (CD8CD3 T cells) immune cell infiltration and histopathological changes were examined in murine skin on Days 1 and 7, following AFL, monopolar-electrocautery (RF), thermocautery, and cryotherapy.
We developed a translational prototype antimicrobial blue light (ABL) device for treating skin wounds with ABL. Partial-thickness surgical wounds were created in live swine, an animal whose skin is considered the most like human skin, then heavily contaminated and left untreated for 24 hours with methicillin-resistant Staphylococcus aureus (MRSA). ABL treatment stabilized and reduced MRSA infection by greater than four orders of magnitude (>99.
View Article and Find Full Text PDFFor patients with lower limb amputations, prostheses are immensely helpful for mobility and the ability to perform job-related or recreational activities. However, the skin covering the amputation stump is typically transposed from adjacent areas of the leg and lacks the weight-bearing capacity that is only found in the specialized skin covering the palms and soles (a.k.
View Article and Find Full Text PDFObjectives: This study investigated a novel strategy for improving regenerative cartilage outcomes. It combines fractional laser treatment with the implantation of neocartilage generated from autologous dynamic Self-Regenerating Cartilage (dSRC).
Methods: dSRC was generated in vitro from harvested autologous swine chondrocytes.
Background: People with Neurofibromatosis Type 1 (NF1) suffer disfigurement and pain when hundreds to thousands of cutaneous neurofibromas (cNFs) appear and grow throughout life. Surgical removal of cNFs under anesthesia is the only standard therapy, leaving surgical scars.
Objective: Effective, minimally-invasive, safe, rapid, tolerable treatment(s) of small cNFs that may prevent tumor progression.
Antimicrobial blue light (aBL) is an attractive option for managing biofilm burden at the skin-implant interface of percutaneous osseointegrated (OI) implants. However, marketed aBL devices have both structural and optical limitations that prevent them from being used in an OI implant environment. They must be handheld, preventing even irradiation of the entire skin-implant interface, and the devices do not offer sufficient optical power outputs required to kill biofilms.
View Article and Find Full Text PDFObjectives: Excess pericardial adipose tissue (PAT) is associated with a higher risk of cardiovascular diseases. Currently, available methods for reducing PAT volume include weight loss through diet and exercise, weight loss with medications, and bariatric surgery. However, these methods are all limited by low patient compliance to maintain the results.
View Article and Find Full Text PDFCutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity.
View Article and Find Full Text PDFBackground: Extracorporeal membrane oxygenators (ECMO) are currently utilized to mechanically ventilate blood when lung or lung and heart function are impaired, like in cases of acute respiratory distress syndrome (ARDS). ARDS can be caused by severe cases of carbon monoxide (CO) inhalation, which is the leading cause of poison-related deaths in the United States. ECMOs can be further optimized for severe CO inhalation using visible light to photo-dissociate CO from hemoglobin (Hb).
View Article and Find Full Text PDFLaryngoscope Investig Otolaryngol
October 2022
Objectives: There is growing evidence that excess adipose tissue within the head and neck contributes to obstructive sleep apnea (OSA), particularly in obese patients. This subset of the population is often difficult to treat with surgical therapies. We theorized that a novel, transcervical method of injectable cryoablation using ice-slurry can achieve low temperatures without causing neurovascular damage or airway distress in a swine model.
View Article and Find Full Text PDFObjectives: Cryolipolysis uses tissue cooling to solidify lipids, preferentially damaging lipid-rich cells. Topical cooling is popular for the reduction of local subcutaneous fat. Injection of biocompatible ice-slurry is a recently introduced alternative.
View Article and Find Full Text PDFIntroduction: The ability of ablative fractional lasers (AFL) to enhance topical drug uptake is well established. After AFL delivery, however, drug clearance by local vasculature is poorly understood. Modifications in vascular clearance may enhance AFL-assisted drug concentrations and prolong drug dwell time in the skin.
View Article and Find Full Text PDFBackground And Objectives: Carbon monoxide (CO) poisoning is responsible for nearly 50,000 emergency department visits and 1200 deaths per year. Compared to oxygen, CO has a 250-fold higher affinity for hemoglobin (Hb), resulting in the displacement of oxygen from Hb and impaired oxygen delivery to tissues. Optimal treatment of CO-poisoned patients involves the administration of hyperbaric 100% oxygen to remove CO from Hb and to restore oxygen delivery.
View Article and Find Full Text PDFSkin wounds are immense medical and socioeconomic burdens, and autologous skin grafting remains the gold standard for wound repair. We recently found that full-thickness micro skin tissue columns (MSTCs) can be harvested with minimal donor site morbidity, and that MSTCs applied to wounds “randomly” (without maintaining their natural epidermal-dermal orientation) can accelerate re-epithelialization. However, despite MSTCs containing all the cellular and extracellular contents of full-thickness skin, normal dermal architecture was not restored by random MSTCs.
View Article and Find Full Text PDFBackground And Objectives: Carbon monoxide (CO) inhalation is the leading cause of poison-related deaths in the United States. CO binds to hemoglobin (Hb), displaces oxygen, and reduces oxygen delivery to tissues. The optimal treatment for CO poisoning in patients with normal lung function is the administration of hyperbaric oxygen (HBO).
View Article and Find Full Text PDFBackground And Objectives: Cryotherapy for melanocytic lesions is often accompanied by collateral damage to the surrounding skin, resulting in skin necrosis and scarring. Adipocytes, like melanocytes, are neural crest-derived cells. Adipocytes have been shown to be more sensitive to cold exposure than their neighboring cells of ectodermal origin, such as epidermal keratinocytes.
View Article and Find Full Text PDFBackground: Cryolipolysis is a noninvasive method for removal of subcutaneous fat for body contouring. Conventional cryolipolysis with topical cooling requires extracting heat from subcutaneous fat by conduction across the skin, thus limiting the amount and the location of the fat removed. The authors hypothesized that local injection of a physiological ice slurry directly into target adipose tissue would lead to more efficient and effective cryolipolysis.
View Article and Find Full Text PDFInhaled carbon monoxide (CO) displaces oxygen from hemoglobin, reducing the capacity of blood to carry oxygen. Current treatments for CO-poisoned patients involve administration of 100% oxygen; however, when CO poisoning is associated with acute lung injury secondary to smoke inhalation, burns, or trauma, breathing 100% oxygen may be ineffective. Visible light dissociates CO from hemoglobin.
View Article and Find Full Text PDFThis manuscript describes the production process for a laboratory apparatus, made from off-the-shelf components, that can be used to collect microcolumns of full-thickness skin tissue. The small size of the microcolumns allows donor sites to heal quickly without causing donor site scarring, while harvesting full-thickness tissue enables the incorporation of all cellular and extracellular components of skin tissue, including those associated with deeper dermal regions and the adnexal skin structures, which have yet to be successfully reproduced using conventional tissue engineering techniques. The microcolumns can be applied directly into skin wounds to augment healing, or they can be used as the autologous cell/tissue source for other tissue engineering approaches.
View Article and Find Full Text PDFThe effectiveness of topical drugs for treatment of non-melanoma skin cancer is greatly reduced by insufficient penetration to deep skin layers. Ablative fractional lasers (AFLs) are known to enhance topical drug uptake by generating narrow microchannels through the skin, but information on AFL-drug delivery in in vivo conditions is limited. In this study, we examined pharmacokinetics, biodistribution and toxicity of two synergistic chemotherapy agents, cisplatin and 5-fluorouracil (5-FU), following AFL-assisted delivery alone or in combination in in vivo porcine skin.
View Article and Find Full Text PDFBackground And Objective: Ablative fractional laser treatment uses thousands of very small laser beam wounds to damage a fraction of the skin, which stimulates tissue remodeling. Each open micro-wound heals without scarring, but the amount of skin tightening achieved is limited. This animal study was performed to test the hypothesis that immediate temporary closure of fractional laser wounds could increase skin tightening after fractional ablative laser treatment.
View Article and Find Full Text PDFBackground: Carbon monoxide (CO) poisoning is a common cause of poison-related mortality. CO binds to hemoglobin in the blood to form carboxyhemoglobin (COHb), impairing oxygen delivery to peripheral tissues. Current treatment of CO-poisoned patients involves oxygen administration to rapidly remove CO and restore oxygen delivery.
View Article and Find Full Text PDFImportance: Potentially harmful chemicals are released when tissues are vaporized. Laser hair removal (LHR) causes heating and often vaporization of hairs, producing both a signature malodorous plume and visible particulates.
Objective: To characterize the chemical composition and quantify the ultrafine particle content of the plume generated during LHR.
In addition to providing a physical barrier, skin also serves a diverse range of physiological functions through different specialized resident cell types/structures, including melanocytes (pigmentation and protection against ultraviolet radiation), Langerhans cells (adaptive immunity), fibroblasts (maintaining extracellular matrix, paracrine regulation of keratinocytes), sweat glands (thermoregulation) and hair follicles (hair growth, sensation and a stem cell reservoir). Restoration of these functional elements has been a long-standing challenge in efforts to engineer skin tissue, while autologous skin grafting is limited by the scarcity of donor site skin and morbidity caused by skin harvesting. We demonstrate an alternative approach of harvesting and then implanting μm-scale, full-thickness columns of human skin tissue, which can be removed from a donor site with minimal morbidity and no scarring.
View Article and Find Full Text PDF