Integrating artificial intelligence (AI) with electrochemical biosensors is revolutionizing medical treatments by enhancing patient data collection and enabling the development of advanced wearable sensors for health, fitness, and environmental monitoring. Electrochemical biosensors, which detect biomarkers through electrochemical processes, are significantly more effective. The integration of artificial intelligence is adept at identifying, categorizing, characterizing, and projecting intricate data patterns.
View Article and Find Full Text PDFGene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction.
View Article and Find Full Text PDFA gene regulatory network (GRN) is a large and complex network consisting of interacting elements that, over time, affect each other's state. The dynamics of complex gene regulatory processes are difficult to understand using intuitive approaches alone. To overcome this problem, we propose an algorithm for inferring the regulatory interactions from knock-out data using a Gaussian model combines with Pearson Correlation Coefficient (PCC).
View Article and Find Full Text PDF