Density functional theory based positron lifetime (PL) calculations for cation and oxygen monovacancies in a range of oxides-hematite, magnetite, hercynite, and alumina-have been conducted to compare the impact of defect chemistry and crystal structure on the predicted lifetimes. The role of defect charge state has also been examined. A comparison across the same type of crystalline structure but different composition shows that oxygen vacancies only induce a slight increase in the positron-electron overlap and thus barely modify the PL as compared to the bulk.
View Article and Find Full Text PDFTo efficiently capture the energy of the nuclear bond, advanced nuclear reactor concepts seek solid fuels that must withstand unprecedented temperature and radiation extremes. In these advanced fuels, thermal energy transport under irradiation is directly related to reactor performance as well as reactor safety. The science of thermal transport in nuclear fuel is a grand challenge as a result of both computational and experimental complexities.
View Article and Find Full Text PDFThe discovery of single structure Ce doped garnet transparent ceramics (TCs) with a broad full width at half maximum (FWHM) is essential to realize a high CRI for high-power white light emitting diodes (LEDs) and laser diodes (LDs). In this work, by utilizing the ion substitution engineering strategy, pure phase GdScAlO:Ce (GSAG:Ce) TC with a broad FWHM of 132.4 nm and a high CRI value of 80.
View Article and Find Full Text PDFAdvancement of optoelectronic and high-power devices is tied to the development of wide band gap materials with excellent transport properties. However, bipolar doping (n-type and p-type doping) and realizing high carrier density while maintaining good mobility have been big challenges in wide band gap materials. Here P-type and n-type conductivity was introduced in β-GaO, an ultra-wide band gap oxide, by controlling hydrogen incorporation in the lattice without further doping.
View Article and Find Full Text PDFPersistent photoconductivity was observed in strontium titanate (SrTiO(3)) single crystals. When exposed to sub-bandgap light (2.9 eV or higher) at room temperature, the free-electron concentration increases by over 2 orders of magnitude.
View Article and Find Full Text PDF