Publications by authors named "Farid Salama"

Strong anharmonic coupling between vibrational states in polycyclic aromatic hydrocarbons (PAH) produces highly mixed vibrational transitions that challenge the current understanding of the nature of the astronomical mid-infrared PAH emission bands. Traditionally, PAH emission bands have been characterized as either aromatic or aliphatic, and this assignment is used to determine the fraction of aliphatic carbon in astronomical sources. In reality, each of the transitions previously utilized for such an attribution is highly mixed with contributions from both aliphatic and aromatic CH motions as well as non-CH motions such as CC stretches.

View Article and Find Full Text PDF

Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photodissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, which affects planet formation within the disks. We report James Webb Space Telescope and Atacama Large Millimeter Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula.

View Article and Find Full Text PDF

The S-S absorption spectra of anthracene (CH), 9-methylanthracene (CH), and 2-methylanthracene (CH) are measured in the ultraviolet region between 330 and 375 nm (26,666 to 30,303 cm) with cavity ring-down spectroscopy in supersonic free-jet expansions of argon. The associated vibronic band systems and their spectroscopic assignments are discussed and compared to previous studies performed using fluorescence excitation and dispersed fluorescence techniques. Density functional theory (DFT) calculations were carried out to study the structures and evaluate the vibrational transitions of the ground and excited states.

View Article and Find Full Text PDF

The "science-softCon UV/Vis Photochemistry Database" (www.photochemistry.org) is a large and comprehensive collection of EUV-VUV-UV-Vis-NIR spectral data and other photochemical information assembled from published peer-reviewed papers.

View Article and Find Full Text PDF

The carriers of the diffuse interstellar bands (DIBs) are largely unidentified molecules ubiquitously present in the interstellar medium (ISM). After decades of study, two strong and possibly three weak near-infrared DIBs have recently been attributed to the [Formula: see text] fullerene based on observational and laboratory measurements. There is great promise for the identification of the over 400 other known DIBs, as this result could provide chemical hints towards other possible carriers.

View Article and Find Full Text PDF

The OREOcube (ORganics Exposure in Orbit cube) experiment on the International Space Station (ISS) will investigate the effects of solar and cosmic radiation on organic thin films supported on inorganic substrates. Probing the kinetics of structural changes and photomodulated organic-inorganic interactions with real-time in situ UV-visible spectroscopy, this experiment will investigate the role played by solid mineral surfaces in the (photo)chemical evolution, transport, and distribution of organics in our solar system and beyond. In preparation for the OREOcube ISS experiment, we report here laboratory measurements of the photostability of thin films of the 9,10-anthraquinone derivative anthrarufin (51 nm thick) layered upon ultrathin films of iron oxides magnetite and hematite (4 nm thick), as well as supported directly on fused silica.

View Article and Find Full Text PDF

We report the first science results from the Space Environment Viability of Organics (SEVO) payload aboard the Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite, which completed its nominal spaceflight mission in May 2011 but continues to acquire data biweekly. The SEVO payload integrates a compact UV-visible-NIR spectrometer, utilizing the Sun as its light source, with a 24-cell sample carousel that houses four classes of vacuum-deposited organic thin films: polycyclic aromatic hydrocarbon (PAH), amino acid, metalloporphyrin, and quinone. The organic films are enclosed in hermetically sealed sample cells that contain one of four astrobiologically relevant microenvironments.

View Article and Find Full Text PDF

Gas-phase cavity ring-down spectroscopy of jet-cooled benzo[ghi]perylene (C22H12) in the 26 950-28 600-cm(-1) spectral range is reported for the first time. This study is part of our extensive laboratory astrophysics program for the study of interstellar polycyclic aromatic hydrocarbons. The observed spectrum shows an intermediate level structure and significant broadening and is associated with the vibronically coupled S1(1A1)<--S0(1A1) and S2(1B1)<--S0(1A1) electronic transitions.

View Article and Find Full Text PDF

As part of our long-term program to test the diffuse interstellar band-polycyclic aromatic hydrocarbon hypothesis, we have investigated the S(1)<--S(0) electronic transition of neutral perylene (C(20)H(12)) in a combined experimental and theoretical study. Jet-cooled perylene was prepared with a pulsed discharge slit nozzle and detected by cavity ring-down spectroscopy. A number of vibronic features were observed in the 24 000-24 900 cm(-1) spectral range.

View Article and Find Full Text PDF