Amino acid salt (AAs) aqueous solutions have recently exhibited a great potential in CO absorption from various gas mixtures. In this work, four hybrid machine learning methods were developed to evaluate 626 CO and AAs equilibrium data for different aqueous solutions of AAs (potassium sarcosinate, potassium l-asparaginate, potassium l-glutaminate, sodium l-phenylalanine, sodium glycinate, and potassium lysinate) gathered from reliable references. The models are the hybrids of the least squares support vector machine and coupled simulated annealing optimization algorithm, radial basis function neural network (RBF-NN), particle swarm optimization-adaptive neuro-fuzzy inference system, and hybrid adaptive neuro-fuzzy inference system.
View Article and Find Full Text PDF