Publications by authors named "Fariba Tayyari"

Past research has characterized the induction of plant defenses in response to chewing insect damage. However, little is known about plant responses to piercing-sucking insects that feed on plant cell-contents like thrips (Caliothrips phaseoli). In this study, we used NMR spectroscopy to measure metabolite changes in response to six days of thrips damage from two field-grown soybean cultivars (cv.

View Article and Find Full Text PDF
Article Synopsis
  • The metabolomics quality assurance and quality control consortium (mQACC) focuses on developing and promoting appropriate reference materials (RMs) for quality assurance (QA) and quality control (QC) in untargeted metabolomics research.
  • The review discusses the current status of RMs and methodologies in untargeted metabolomics and lipidomics, aiming for standardized results and better comparisons across studies and labs.
  • Utilizing RMs can enhance data quality and consistency in metabolomics research, with ongoing efforts in developing new RMs and promoting educational initiatives to strengthen QA practices in the field.
View Article and Find Full Text PDF

Background: Impaired brain energy metabolism is a key feature of Parkinson's disease (PD). Terazosin (TZ) binds phosphoglycerate kinase 1 and stimulates its activity, which enhances glycolysis and increases ATP levels. Preclinical and epidemiologic data suggest that TZ may be neuroprotective in PD.

View Article and Find Full Text PDF

Objectives: Endothelial cells that line the entire vascular system play a pivotal role in the control of various physiological processes, including metabolism. Additionally, endothelial dysfunction is associated with many pathological conditions, including obesity. Here, we assessed the role of the BBSome, a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins in endothelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • Both glucose and lactate are crucial for heart metabolism, especially under stress, as they get converted to pyruvate for energy production in mitochondria.
  • The study found that mice lacking a key protein for pyruvate transport (MPC1) developed severe heart issues, leading to pathological changes and early death.
  • A ketogenic or high-fat diet helped reverse damage in these mice by providing alternative energy sources, but only a preemptive diet was effective in saving them from rapid heart failure after an induced stress condition.
View Article and Find Full Text PDF

Introduction: The metabolomics quality assurance and quality control consortium (mQACC) evolved from the recognized need for a community-wide consensus on improving and systematizing quality assurance (QA) and quality control (QC) practices for untargeted metabolomics.

Objectives: In this work, we sought to identify and share the common and divergent QA and QC practices amongst mQACC members and collaborators who use liquid chromatography-mass spectrometry (LC-MS) in untargeted metabolomics.

Methods: All authors voluntarily participated in this collaborative research project by providing the details of and insights into the QA and QC practices used in their laboratories.

View Article and Find Full Text PDF

This study examined the relationship between glycans, metabolites, and development in . Samples of N2 animals were synchronized and grown to five different time points ranging from L1 to a mixed population of adults, gravid adults, and offspring. Each time point was replicated seven times.

View Article and Find Full Text PDF

Dense time-series metabolomics data are essential for unraveling the underlying dynamic properties of metabolism. Here we extend high-resolution-magic angle spinning (HR-MAS) to enable continuous monitoring of metabolism by NMR (CIVM-NMR) and provide analysis tools for these data. First, we reproduced a result in human chronic lymphoid leukemia cells by using isotope-edited CIVM-NMR to rapidly and unambiguously demonstrate unidirectional flux in branched-chain amino acid metabolism.

View Article and Find Full Text PDF

We describe here the agreed upon first development steps and priority objectives of a community engagement effort to address current challenges in quality assurance (QA) and quality control (QC) in untargeted metabolomic studies. This has included (1) a QA and QC questionnaire responded to by the metabolomics community in 2015 which recommended education of the metabolomics community, development of appropriate standard reference materials and providing incentives for laboratories to apply QA and QC; (2) a 2-day 'Think Tank on Quality Assurance and Quality Control for Untargeted Metabolomic Studies' held at the National Cancer Institute's Shady Grove Campus and (3) establishment of the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) to drive forward developments in a coordinated manner.

View Article and Find Full Text PDF

Breast cancer, a heterogeneous disease with variable pathophysiology and biology, is classified into four major subtypes. While hormonal- and antibody-targeted therapies are effective in the patients with luminal and HER-2 subtypes, the patients with triple-negative breast cancer (TNBC) subtype do not benefit from these therapies. The incidence rates of TNBC subtype are higher in African-American women, and the evidence indicates that these women have worse prognosis compared to women of European descent.

View Article and Find Full Text PDF

An elevated circulating cystathionine concentration, which arises in part from insufficiencies of vitamin B-6, B-12, or folate, has been shown to be associated with cardiovascular disease (CVD) risk. Hydrogen sulfide (HS) is a gasotransmitter involved in vasodilation, neuromodulation, and inflammation. Most endogenously produced HS is formed by pyridoxal phosphate (PLP)-dependent enzymes by noncanonical reactions of the transsulfuration pathway that yield HS concurrently form lanthionine and homolanthionine.

View Article and Find Full Text PDF

NMR metabolomics are primarily conducted with 1D nuclear Overhauser enhancement spectroscopy (NOESY) presat for water suppression and Carr-Purcell-Meiboom-Gill (CPMG) presat as a T filter to remove macromolecule signals. Others pulse sequences exist for these two objectives but are not often used in metabolomics studies, because they are less robust or unknown to the NMR metabolomics community. However, recent improvements on alternative pulse sequences provide attractive alternatives to 1D NOESY presat and CPMG presat.

View Article and Find Full Text PDF

Reprogrammed cellular metabolism is a common characteristic observed in various cancers. However, whether metabolic changes directly regulate cancer development and progression remains poorly understood. Here we show that BCAT1, a cytosolic aminotransferase for branched-chain amino acids (BCAAs), is aberrantly activated and functionally required for chronic myeloid leukaemia (CML) in humans and in mouse models of CML.

View Article and Find Full Text PDF

A (1)H NMR global metabolomics approach was used to investigate the urinary metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) or partially purified apple procyanidins (PPAP). After collecting 24-h baseline urine, 24 female Sprague-Dawley rats were randomly separated into two groups and gavaged with PPCP or PPAP twice using a dose of 250 mg extracts per kilogram body weight. The 24-h urine samples were collected after the gavage.

View Article and Find Full Text PDF

Scope: The objective was to investigate the metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) using (1) H NMR and UHPLC-Q-Orbitrap-HRMS metabolomics approaches, and to identify the contributing metabolites.

Methods And Results: Twenty-four female Sprague-Dawley rats were randomly separated into two groups and administered PPCP or partially purified apple procyanidins (PPAP) for three times using a 250 mg extracts/kg body weight dose. Plasma was collected 6 h after the last gavage and analyzed using (1) H NMR and UHPLC-Q-Orbitrap-HRMS.

View Article and Find Full Text PDF

Metabolic reprogramming that alters the utilization of glucose including the "Warburg effect" is critical in the development of a tumorigenic phenotype. However, the effects of the Harvey-ras (H-ras) oncogene on cellular energy metabolism during mammary carcinogenesis are not known. The purpose of this study was to determine the effect of H-ras transformation on glucose metabolism using the untransformed MCF10A and H-ras oncogene transfected (MCF10A-ras) human breast epithelial cells, a model for early breast cancer progression.

View Article and Find Full Text PDF

Recently, the enhanced resolution and sensitivity offered by chemoselective isotope tags have enabled new and enhanced methods for detecting hundreds of quantifiable metabolites in biofluids using nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry. However, the inability to effectively detect the same metabolites using both complementary analytical techniques has hindered the correlation of data derived from the two powerful platforms and thereby the maximization of their combined strengths for applications such as biomarker discovery and the identification of unknown metabolites. With the goal of alleviating this bottleneck, we describe a smart isotope tag, (15)N-cholamine, which possesses two important properties: an NMR sensitive isotope and a permanent charge for MS sensitivity.

View Article and Find Full Text PDF

This study was designed to investigate the impact of 1,25-dihydroxyvitamin D (1,25(OH)2D) on glucose metabolism during early cancer progression. Untransformed and ras-oncogene transfected (ras) MCF10A human breast epithelial cells were employed to model early breast cancer progression. 1,25(OH)2D modified the response of the ras cells to glucose restriction, suggesting 1,25(OH)2D may reduce the ras cell glucose addiction noted in cancer cells.

View Article and Find Full Text PDF

Metabolite identification in the complex NMR spectra of biological samples is a challenging task due to significant spectral overlap and limited signal-to-noise. In this study we present a new approach, RANSY (ratio analysis NMR spectroscopy), which identifies all the peaks of a specific metabolite on the basis of the ratios of peak heights or integrals. We show that the spectrum for an individual metabolite can be generated by exploiting the fact that the peak ratios for any metabolite in the NMR spectrum are fixed and proportional to the relative numbers of magnetically distinct protons.

View Article and Find Full Text PDF

NMR spectroscopy is a powerful analytical tool for both qualitative and quantitative analysis. However, accurate quantitative analysis in complex fluids such as human blood plasma is challenging, and analysis using one-dimensional NMR is limited by signal overlap. It is impractical to use heteronuclear experiments involving natural abundance (13)C on a routine basis due to low sensitivity, despite their improved resolution.

View Article and Find Full Text PDF

An increased interest in metabolite profiling is driving the need for improved analytical techniques with greater performance for a variety of important applications. Despite their limited sensitivity, nuclear magnetic resonance (NMR) methods are attractive because of their simplicity, reproducibility, quantitative nature, and wide applicability. The use of chemoselective isotopic tags has the potential to advance the application of NMR for analyzing metabolites in complex biofluids by allowing detection of metabolites down to the low micromoalr level with high resolution and specificity.

View Article and Find Full Text PDF

Molecular structure of 1,1,1-trifluoro-pentane-2,4-dione, known as trifluoro-acetylacetone (TFAA), has been investigated by means of Density Functional Theory (DFT) calculations and the results were compared with those of acetylacetone (AA) and hexafluoro-acetylacetone (HFAA). The harmonic vibrational frequencies of both stable cis-enol forms were calculated at B3LYP level of theory using 6-31G** and 6-311++G** basis sets. We also calculated the anharmonic frequencies at B3LYP/6-31G** level of theory for both stable cis-enol isomers.

View Article and Find Full Text PDF

FT Raman and FTIR spectra of Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) and its deuterated analogue are recorded. Comparison between the spectra obtained by two techniques, a series of density functional theory (DFT) calculations and the spectral behavior upon deuteration were used for the assignment of the vibrational spectra of this compound. The calculated vibrational frequencies by the B3LYP, B3PW91, G96LYP, G96P86, and MPWLYP density functionals are generally consistent with the observed spectra.

View Article and Find Full Text PDF