Gallium phosphide (GaP) is a III-V semiconductor with remarkable optoelectronic properties, and it has almost the same lattice constant as silicon (Si). However, to date, the monolithic and large-scale integration of GaP devices with silicon remains challenging. In this study, we present a nanoheteroepitaxy approach using gas-source molecular-beam epitaxy for selective growth of GaP islands on Si nanotips, which were fabricated using complementary metal-oxide semiconductor (CMOS) technology on a 200 mm n-type Si(001) wafer.
View Article and Find Full Text PDFOptically addressable solid-state defects are emerging as some of the most promising qubit platforms for quantum networks. Maximizing photon-defect interaction by nanophotonic cavity coupling is key to network efficiency. We demonstrate fabrication of gallium phosphide 1-D photonic crystal waveguide cavities on a silicon oxide carrier and subsequent integration with implanted silicon-vacancy (SiV) centers in diamond using a stamp-transfer technique.
View Article and Find Full Text PDFWe demonstrate quasi-phase matched, triply-resonant sum frequency conversion in 10.6-µm-diameter integrated gallium phosphide ring resonators. A small-signal, waveguide-to-waveguide power conversion efficiency of 8 ± 1.
View Article and Find Full Text PDFWe demonstrate post-fabrication target-wavelength trimming with a gallium phosphide on a silicon nitride integrated photonic platform using controlled electron-beam exposure of hydrogen silsesquioxane cladding. A linear relationship between the electron-beam exposure dose and resonant wavelength red-shift enables deterministic, individual trimming of multiple devices on the same chip to within 30 pm of a single target wavelength. Second harmonic generation from telecom to near infrared at a target wavelength is shown in multiple devices with quality factors on the order of 10.
View Article and Find Full Text PDFSecond harmonic conversion from 1550 nm to 775 nm with an efficiency of 400% W is demonstrated in a gallium phosphide (GaP) on oxide integrated photonic platform. The platform consists of doubly-resonant, phase-matched ring resonators with quality factors Q ∼ 10, low mode volumes V ∼ 30(λ/n), and high nonlinear mode overlaps. Measurements and simulations indicate that conversion efficiencies can be increased by a factor of 20 by improving the waveguide-cavity coupling to achieve critical coupling in current devices.
View Article and Find Full Text PDFGenerating entangled graph states of qubits requires high entanglement rates with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon collection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning.
View Article and Find Full Text PDFDeveloping a nanoscale, integrable, and electrically pumped single mode light source is an essential step toward on-chip optical information technologies and sensors. Here, we demonstrate nanocavity enhanced electroluminescence in van der Waals heterostructures (vdWhs) at room temperature. The vertically assembled light-emitting device uses graphene/boron nitride as top and bottom tunneling contacts and monolayer WSe as an active light emitter.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2016
The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries.
View Article and Find Full Text PDFWe describe an upconversion infrared photodetector assisted by a gallium phosphide photonic crystal nanocavity directly coupled to a silicon photodiode. The strongly cavity-enhanced second harmonic signal radiating from the gallium phosphide membrane can thus be efficiently collected by the silicon photodiode, which promises a high photoresponsivity of the upconversion detector as 0.81 A/W with the coupled power of 1W.
View Article and Find Full Text PDFEngineering the electromagnetic environment of a nanometre-scale light emitter by use of a photonic cavity can significantly enhance its spontaneous emission rate, through cavity quantum electrodynamics in the Purcell regime. This effect can greatly reduce the lasing threshold of the emitter, providing a low-threshold laser system with small footprint, low power consumption and ultrafast modulation. An ultralow-threshold nanoscale laser has been successfully developed by embedding quantum dots into a photonic crystal cavity (PCC).
View Article and Find Full Text PDFWe report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of the MoS SE rate exceeding a factor of 70.
View Article and Find Full Text PDFWe demonstrate a large enhancement in the interaction of light with graphene through coupling with localized modes in a photonic crystal nanocavity. Spectroscopic studies show that a single atomic layer of graphene reduces the cavity reflection by more than a factor of one hundred, while also sharply reducing the cavity quality factor. The strong interaction allows for cavity-enhanced Raman spectroscopy on subwavelength regions of a graphene sample.
View Article and Find Full Text PDFWe describe and experimentally demonstrate a technique for deterministic, large coupling between a photonic crystal (PC) nanocavity and single photon emitters. The technique is based on in situ scanning of a PC cavity over a sample and allows the precise positioning of the cavity over a desired emitter with nanoscale resolution. The power of the technique is demonstrated by coupling the PC nanocavity to a single nitrogen vacancy (NV) center in diamond, an emitter system that provides optically accessible electron and nuclear spin qubits.
View Article and Find Full Text PDFWe demonstrate up to 30 nm tuning of gallium phosphide photonic crystal cavities resonances at aproximately 1.5 microm using a tapered optical fiber. The tuning is achieved through a combination of near-field perturbations and mechanical deformation of the membrane, both induced by the fiber probe.
View Article and Find Full Text PDFWe demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effciency P(out)/P(2)(in,coupled)=430%/W. The large electronic band gap of GaP minimizes absorption loss, allowing effcient conversion.
View Article and Find Full Text PDF