The structure of the skin only allows those hydrophobic elements to penetrate through the depth of the skin with low molecular weight (less than 500 Da) and low daily dose (less than 100 mg/day). Skin penetration of many drugs such as antibiotics at a high daily dose remains an unresolved challenge. In this study a transdermal patch using cephalexin as an antibiotic drug model was developed.
View Article and Find Full Text PDFThis work uses optimization study to formulate a patient-friendly antitussive fast-dissolving oral film based on phenylephrine hydrochloride (Phen) and dextromethorphan hydrobromide (Dex). The designed films were based on hydroxypropylmethyl cellulose (HPMC) with two grades (E5 and E50) as a film-forming polymer by the solvent-casting method. Polyethylene glycol with two molar masses (400 and 1000) was used as a plasticizer, while aspartame was used as a sweetener and microcrystalline cellulose intended to act as a disintegrant.
View Article and Find Full Text PDFLow mechanical strength and untargeted osteoinduction of chitosan hydrogel limit its application for bone regeneration. This study aimed to develop an injectable chitosan hydrogel with enhanced mechanical strength and improved osteoinductivity for bone tissue engineering. For this purpose, chitosan-modified halloysite nanotubes (mHNTs) were synthesized first.
View Article and Find Full Text PDFThe encapsulation of ascorbic acid within chitosan nanoparticles (CHNs), embedded in a fibrous structure of a dexamethasone (Dex)-loaded PCL scaffold, provides a new plan for osteogenic differentiation of mesenchymal stem cells. This electrospun PCL fibrous scaffold can release Dex, as bone differentiation initiator, and ascorbic acid, as bone differentiation enhancer, in an approximately sustained release pattern for about 2 weeks. Ascorbic acid-loaded CHNs were prepared by electrospraying a mixture of chitosan and ascorbic acid, and Dex-containing PCL fibers were prepared by electrospinning a mixture of PCL and Dex.
View Article and Find Full Text PDFMidazolam is considered as one of the best first-line drugs in managing status epilepticus in children who require emergency drug treatment. Due to poor water solubility, oral bioavailability of midazolam is relatively low. To improve its dissolution and absorption, midazolam nano-suspensions were formulated with different stabilizers using the ultrasonic technique.
View Article and Find Full Text PDFObjectives: The main objective of this novel study was to develop midazolam hydrochloride fast dissolving oral films (FDFs) using solvent casting method and to evaluate the characteristics of the optimum formulation through in vitro and in vivo analysis. The FDFs are new favorable solid dosage forms that deliver drugs rapidly to the blood circulation system and have great advantages in the emergent control of severe neuropathic attacks in children.
Methods: Midazolam nanosuspensions were prepared using the ultrasonic method and then incorporated in the hydroxypropyl methyl cellulose (HPMC)/pullulan polymeric matrix with other excipients like glycerol and cellulose nanofiber as a softener and a compatibilizer, respectively.
AAPS PharmSciTech
July 2018
This work aimed to using optimization study to formulate a patient-friendly captopril fast-dissolving oral film with satisfactory disintegration time. Films were made with pullulan and hydroxypropyl methyl cellulose (HPMC) by using the solvent-casting method. Cellulose nanofiber (CNF) was used as a compatibilizer and glycerine was used as a plasticizer.
View Article and Find Full Text PDFRivastigmine hydrogen tartrate (RHT) is a pseudo-irreversible inhibitor of cholinesterase and is used for the treatment of Alzheimer's. However, RHT delivery to the brain is limited by the blood-brain barrier (BBB). The purpose of this study was to improve the brain-targeting delivery of RHT by producing and optimizing rivastigmine hydrogen tartrate-loaded tocopherol succinate-based solid lipid nanoparticles (RHT-SLNs).
View Article and Find Full Text PDFThis study investigated the cellular uptake of fluorescein isothiocyanate-labelled mesoporous silica nanoparticles (FITC-MSNs), amine-functionalised FITC-MSNs (AP-FITC-MSNs) and their gallic acid (GA)-loaded counterparts. Mesoporous silica nanoparticles were labelled with fluorescein isothiocyanate, functionalised by 3-aminopropyltriethoxysilane (APTES) (AP-FITC-MSNs) and then loaded by GA. All nanoparticles were characterised by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, and X-ray diffraction.
View Article and Find Full Text PDFHere we report a novel approach for preparation of a 6-day transdermal drug delivery system (TDDS) as treatment for mild to moderate Alzheimer's disease. The spray drying method was used to prepare microparticles containing the anti-Alzheimer drug, Rivastigmine, in combination with the natural polymer, chitosan, for transdermal drug delivery applications. The content of the drug was determined by High Performance Liquid Chromatography (HPLC) method which was validated as per FDA guidelines.
View Article and Find Full Text PDFRivastigmine hydrogen tartrate (RT) is a molecule with both hydrophilic and hydrophobic properties used for the treatment of the Alzheimer's disease. In this work, the larger pore size of mesoporous silica nanoparticles (P1-MSN) was synthesized and then, P1-MSN were functionalized by succinic anhydride (S-P1-MSN) and 3-aminopropyltriethoxysilane (APTES) (AP-CO-P1-MSN) using the grafting and co-condensation methods, respectively. A new method was used for the functionalization of P1-MSN by succinic anhydride at room temperature.
View Article and Find Full Text PDFSkeletal muscle tissue shows a remarkable potential in regeneration of injured tissue. However, in some of chronic and volumetric muscle damages, the native tissue is incapable to repair and remodeling the trauma. In the same condition, stem-cell therapy increased regeneration in situations of deficient muscle repair, but the major problem seems to be the lack of ability to attachment and survive of injected cells on the exact location.
View Article and Find Full Text PDFThis research reports the encapsulation of dexamethasone (Dex) within the chitosan microspheres (CSMs) embedded in a fibrous structure of poly(ɛ-caprolactone) (PCL) to provide a platform for osteogenic differentiation of human mesenchymal stem cells (hMSCs). Dex loaded CSMs were prepared by spray drying a mixture of chitosan and Dex. Then, they were electrospun with PCL solution to create a bilayer fibrous scaffold (PCL/CSMs-Dex).
View Article and Find Full Text PDFInjectable thermosensitive chitosan hydrogel is an attractive temperature-induced sol-gel solution that is widely used in drug delivery and biomedical applications. In this study, an injectable antimicrobial delivery system for periodontal treatment based on chitosan/gelatin/β-glycerolphosphate solution has been developed. The result of thermal and mechanical evaluations of chitosan/gelatin/β-glycerolphosphate hydrogel showed that adding gelatin to chitosan/β-glycerolphosphate solution significantly decreased gelling time and increased gel strength at 37℃.
View Article and Find Full Text PDFIn the present study, injectable hydrogels based on gum tragacanth-tyramine conjugate were prepared by enzymatic oxidation of tyramine radicals in the presence of hydrogen peroxide. Then, in vitro release of bovine serum albumin and insulin as model protein drugs from this polymeric network was investigated. Also, to improve the properties of this hydrogel, a blended hydrogel composed of tyramine-conjugated gelatin and tyramine-conjugated tragacanth was prepared.
View Article and Find Full Text PDFRecently, great attention has been paid to in situ gel-forming chitosan/glycerophosphate (CS/Gp) formulation due to its high biocompatibility with incorporated cells and medical agents, biodegradability and sharp thermosensitive gelation. CS/Gp is in liquid state at room temperature and after minimally invasive administration into the desired tissue, it forms a solid-like gel as a response to temperature increase. The overview of various recently patented strategies on injectable delivery systems indicates the significance of this formulation in biomedical applications.
View Article and Find Full Text PDFPolyethylene glycol hydrogel (PEG) conjugated with arginyl glycyl aspartic acid (RGD) (PEG-RGD) has been considered to be a scaffold in three-dimensional (3D) culture that improves neurite outgrowth; on the other hand, tenascin C controls neural growth and differentiation. In this study, the effect of a combined RGD and tenascin C mixture in 3D culture (3D-PEG-RGD-TnC) on the survival, growth and differentiation of neural stem cells. The viability of the culture has been evaluated by live/dead assay and the results show that the viability of NSCs in 3D-PEG-RGD-TnC is significantly higher than its value in 3D-PEG-RGD.
View Article and Find Full Text PDFInjectable In situ gel-forming chitosan/β-glycerol phosphate (CS/β-Gp) solution can be introduced into the body in a minimally invasive manner prior to solidifying within the target tissue. This hydrogel is a good candidate for achieving a prolonged drug delivery system for insulin considering its high molecular weight. In addition to the physicochemical characterization of this hydrogel, in vitro and in vivo applications were studied as a sustained insulin delivery system.
View Article and Find Full Text PDFIn situ gelling systems are very attractive for pharmaceutical applications due to their biodegradability and simple manufacturing processes. The synthesis and characterization of thermosensitive poly(D,L-lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-PLGA triblock copolymers as in situ gelling matrices were investigated in this study as a drug delivery system. Ring-opening polymerization using microwave irradiation was utilized as a novel technique, and the results were compared with those using a conventional method of polymerization.
View Article and Find Full Text PDFRecently, great attention has been paid to in situ gel-forming chitosan/glycerol-phosphate (chitosan/Gp) solution due to their good biodegradability and thermosensitivity. This in situ gel-forming system is injectable fluid that can be introduced into the body in a minimally invasive manner prior to solidifying within the desired tissue. At the present study, insulin release from chitosan/Gp solution has been investigated.
View Article and Find Full Text PDFIntracranial pressure (ICP) is derived from cerebral blood pressure and cerebrospinal fluid (CSF) circulatory dynamics and can be affected in the course of many diseases. Computer analysis of the ICP time pattern plays a crucial role in the diagnosis and treatment of those diseases. This study proposes the application of Linninger et al.
View Article and Find Full Text PDF