Parkinson's disease (PD) is one of the most common neurodegenerative diseases, but no disease modifying therapies have been successful in clinical translation presenting a major unmet medical need. A promising target is alpha-synuclein or its aggregated form, which accumulates in the brain of PD patients as Lewy bodies. While it is not entirely clear which alpha-synuclein protein species is disease relevant, mere overexpression of alpha-synuclein in hereditary forms leads to neurodegeneration.
View Article and Find Full Text PDFCell populations and tissues exhibit unique gene expression profiles, which allow for characterizing and distinguishing cellular subtypes. Monitoring gene expression of cell type-specific markers can indicate cell status such as proliferation, stress, quiescence, or maturation. Quantitative reverse transcriptase PCR (qRT-PCR) allows quantifying RNA expression of cell type-specific markers and distinguishing one cell type from another.
View Article and Find Full Text PDFBrain Sci
February 2023
Transplantation of immature dopaminergic neurons or neural precursors derived from embryonic stem cells (ESCs) into the substantia nigra pars compacta (SNpc) is a potential therapeutic approach for functional restitution of the nigrostriatal pathway in Parkinson's disease (PD). However, further studies are needed to understand the effects of the local microenvironment on the transplanted cells to improve survival and specific differentiation in situ. We have previously reported that the adult SNpc sustains a neurogenic microenvironment.
View Article and Find Full Text PDFParkinson's disease (PD) is one of the most common neurodegenerative diseases, but no disease modifying therapies have been successful in clinical translation presenting a major unmet medical need. A promising target is alpha-synuclein or its aggregated form, which accumulates in the brain of PD patients as Lewy bodies. While it is not entirely clear which alpha-synuclein protein species is disease relevant, mere overexpression of alpha-synuclein in hereditary forms leads to neurodegeneration.
View Article and Find Full Text PDFOrphanet J Rare Dis
October 2022
Background: Variants in the mitochondrial complex I assembly factor, NUBPL are associated with a rare cause of complex I deficiency mitochondrial disease. Patients affected by complex I deficiency harboring homozygous NUBPL variants typically have neurological problems including seizures, intellectual disability, and ataxia associated with cerebellar hypoplasia. Thus far only 19 cases have been reported worldwide, and no treatment is available for this rare disease.
View Article and Find Full Text PDFSpinocerebellar ataxia type 10 (SCA10) is an autosomal-dominant disorder caused by an expanded pentanucleotide repeat in the gene. This repeat expansion, when fully penetrant, has a size of 850-4,500 repeats. It has been shown that the repeat composition can be a modifier of disease, e.
View Article and Find Full Text PDFTo optimize differentiation protocols for stem cell-based modeling applications, it is essential to assess the change in gene expression during the differentiation process. This allows controlling its differentiation efficiency into the target cell types. While RNA transcriptomics provides detail at a larger scale, timing and cost are prohibitive to include such analyses in the optimization process.
View Article and Find Full Text PDFBackground: Human induced pluripotent stem cell (iPSC) models have been hailed as a breakthrough for understanding disease and developing new therapeutics. The major advantage of iPSC-derived neurons is that they carry the genetic background of the donor, and as such could be more predictive for clinical translation. However, the development of these cell models is time-consuming and expensive and it is thus critical to maximize readout of markers for immunocytochemistry.
View Article and Find Full Text PDFAlpha-synuclein overexpression and aggregation are critical factors in the pathogenesis of Parkinson's disease (PD). Clinical cases with alpha-synuclein (SNCA) multiplications or deletions indicate that gene expression levels are essential for neurodegeneration and neurodevelopment. Here, we developed an isogenic SNCA gene dosage model using CRISPR/Cas9 gene editing to introduce frameshift mutations into exon 2 of the SNCA coding region in human induced pluripotent stem cells (iPSCs) from a patient with an SNCA triplication.
View Article and Find Full Text PDFWe describe the clinical and neuropathologic features of patients with Lewy body spectrum disorder (LBSD) carrying a nonsense variant, c.604C>T; p.R202X, in the glucocerebrosidase 1 () gene.
View Article and Find Full Text PDFNeurodevelopmental and late-onset neurodegenerative disorders present as separate entities that are clinically and neuropathologically quite distinct. However, recent evidence has highlighted surprising commonalities and converging features at the clinical, genomic, and molecular level between these two disease spectra. This is particularly striking in the context of autism spectrum disorder (ASD) and Parkinson's disease (PD).
View Article and Find Full Text PDFHomologous recombination between repetitive sequences can lead to gross chromosomal rearrangements (GCRs). At fission yeast centromeres, Rad51-dependent conservative recombination predominantly occurs between inverted repeats, thereby suppressing formation of isochromosomes whose arms are mirror images. However, it is unclear how GCRs occur in the absence of Rad51 and how GCRs are prevented at centromeres.
View Article and Find Full Text PDFHeterochromatin, characterized by histone H3 lysine 9 (H3K9) methylation, assembles on repetitive regions including centromeres. Although centromeric heterochromatin is important for correct segregation of chromosomes, its exact role in maintaining centromere integrity remains elusive. Here, we found in fission yeast that heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres.
View Article and Find Full Text PDFBackground: Mutations in the leucine rich repeat kinase 2 (LRRK2) gene are among the most common genetic causes of Lewy body Parkinson's disease (PD). However, LRRK2 mutations can also lead to a variety of pathological phenotypes other than typical PD, including relatively pure nigrostriatal cell loss without alpha-synuclein-positive Lewy bodies or Lewy neurites, progressive supranuclear palsy (PSP), and multiple system atrophy (MSA). The mechanisms behind this remarkable pleomorphic pathology are currently unclear.
View Article and Find Full Text PDFNucleic Acids Res
November 2017
Centromeres that are essential for faithful segregation of chromosomes consist of unique DNA repeats in many eukaryotes. Although recombination is under-represented around centromeres during meiosis, little is known about recombination between centromere repeats in mitotic cells. Here, we compared spontaneous recombination that occurs between ade6B/ade6X inverted repeats integrated at centromere 1 (cen1) or at a non-centromeric ura4 locus in fission yeast.
View Article and Find Full Text PDFMutations in leucine-rich repeat kinase 2 (LRRK2) are associated with increased risk for developing Parkinson's disease (PD). Previously, we found that LRRK2 G2019S mutation carriers have increased mitochondrial DNA (mtDNA) damage and after zinc finger nuclease-mediated gene mutation correction, mtDNA damage was no longer detectable. While the mtDNA damage phenotype can be unambiguously attributed to the LRRK2 G2019S mutation, the underlying mechanism(s) is unknown.
View Article and Find Full Text PDFCentromeres consist of DNA repeats in many eukaryotes. Non-allelic homologous recombination (HR) between them can result in gross chromosomal rearrangements (GCRs). In fission yeast, Rad51 suppresses isochromosome formation that occurs between inverted repeats in the centromere.
View Article and Find Full Text PDFTo test the contribution of homologous recombinational repair (HRR) in repairing DNA damage sites induced by high-energy iron ions, we used (1) HRR-deficient rodent cells carrying a deletion in the RAD51D gene and (2) syngeneic human cells impaired for HRR by RAD51D or RAD51 knockdown using RNA interference. We found that in response to exposure to iron ions, HRR contributed to cell survival in rodent cells and that HRR deficiency abrogated RAD51 focus formation. Complementation of the HRR defect by human RAD51D rescues both enhanced cytotoxicity and RAD51 focus formation.
View Article and Find Full Text PDF