Publications by authors named "Farhana Tazmim Pinki"

A stable predictive model is essential for forecasting the chances of cesarean or C-section (CS) delivery, as unnecessary CS delivery can adversely affect neonatal, maternal, and pediatric morbidity and mortality, and can incur significant financial burdens. Limited state-of-the-art machine learning models have been applied in this area in recent years, and the current models are insufficient to correctly predict the probability of CS delivery. To alleviate this drawback, we have proposed a Henry gas solubility optimization (HGSO)-based random forest (RF), with an improved objective function, called HGSORF, for the classification of CS and non-CS classes.

View Article and Find Full Text PDF

A healthcare monitoring system needs the support of recent technologies such as artificial intelligence (AI), machine learning (ML), and big data, especially during the COVID-19 pandemic. This global pandemic has already taken millions of lives. Both infected and uninfected people have generated big data where AI and ML can use to combat and detect COVID-19 at an early stage.

View Article and Find Full Text PDF