Pivotal to brain development and function is an intact blood-brain barrier (BBB), which acts as a gatekeeper to control the passage and exchange of molecules and nutrients between the circulatory system and the brain parenchyma. The BBB also ensures homeostasis of the central nervous system (CNS). We report that germ-free mice, beginning with intrauterine life, displayed increased BBB permeability compared to pathogen-free mice with a normal gut flora.
View Article and Find Full Text PDFNutrients and environmental chemicals, including endocrine disruptors, have been incriminated in the current increase in male reproductive dysfunction, but the underlying mechanisms remain unknown. The gastrointestinal tract represents the largest surface area exposed to our environment and thereby plays a key role in connection with exposure of internal organs to exogenous factors. In this context the gut microbiome (all bacteria and their metabolites) have been shown to be important contributors to body physiology including metabolism, cognitive functions and immunity.
View Article and Find Full Text PDFMammalian brain development is initiated in utero and internal and external environmental signals can affect this process all the way until adulthood. Recent observations suggest that one such external cue is the indigenous microbiota which has been shown to affect developmental programming of the brain. This may have consequences for brain maturation and function that impact on cognitive functions later in life.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2011
Microbial colonization of mammals is an evolution-driven process that modulate host physiology, many of which are associated with immunity and nutrient intake. Here, we report that colonization by gut microbiota impacts mammalian brain development and subsequent adult behavior. Using measures of motor activity and anxiety-like behavior, we demonstrate that germ free (GF) mice display increased motor activity and reduced anxiety, compared with specific pathogen free (SPF) mice with a normal gut microbiota.
View Article and Find Full Text PDFTight junction integral membrane proteins such as claudins and occludin are tethered to the actin cytoskeleton by adaptor proteins, notably the closely related zonula occludens (ZO) proteins ZO-1, ZO-2, and ZO-3. All three ZO proteins have recently been inactivated in mice. Although ZO-3 knockout mice lack an obvious phenotype, animals deficient in ZO-1 or ZO-2 show early embryonic lethality.
View Article and Find Full Text PDFThe biosynthesis of both nitric oxide (NO) and hydrogen sulfide (H2S) is increased in lipopolysaccharide (LPS)-injected mice and rats but their interaction in these models is not known. In this study we examined the effect of the NO donor, nitroflurbiprofen (and the parent molecule flurbiprofen) on NO and H2S metabolism in tissues from LPS-pretreated rats. Administration of LPS (10 mg kg(-1), i.
View Article and Find Full Text PDFThe present study examined the temporal expression of nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 in rat brains after traumatic brain injury (TBI). We studied the effects of mercaptoethylguanidine (MEG), a dual inhibitor of the inducible iNOS and COX with scavenging effect on peroxynitrite, on physiologic variables, brain pathogenesis, and neurologic performance in rats after a lateral fluid percussive-induced TBI. Mean arterial blood pressure and percentage cerebral tissue perfusion in MEG-treated TBI rats showed significant improvement when compared with TBI rats.
View Article and Find Full Text PDFHydrogen sulfide (H2S) is a naturally occurring gaseous transmitter, which may play important roles in normal physiology and disease. Here, we investigated the role of H2S in the organ injury caused by severe endotoxemia in the rat. Male Wistar rats were subjected to acute endotoxemia (Escherichia coli lipopolysaccharide (LPS) 6 mg kg(-1) intravenously (i.
View Article and Find Full Text PDFHydrogen sulfide (H2S) is synthesized in the body from L-cysteine by several enzymes including cystathionine-gamma-lyase (CSE). To date, there is little information about the potential role of H2S in inflammation. We have now investigated the part played by H2S in endotoxin-induced inflammation in the mouse.
View Article and Find Full Text PDFBackground: The up-regulation of nitric oxide (NO) and cyclooxgenase-2 (COX-2) has been implicated in the pathophysiology of hemorrhagic shock. We examined the effects of aminoguanidine (AG), which is a known inducible nitric oxide synthase (iNOS) inhibitor, and NS-398, a known COX-2 inhibitor, in our rat model of refractory hemorrhagic shock (RHS).
Material And Methods: We measured tissue iNOS and COX-2 protein expression, brain and plasma nitrate/nitrite and prostaglandin E2 (PGE2) levels, plasma creatinine and glutamic oxalacetic transaminase (GOT) levels, quantified the histological damages in kidney, liver, lung, and brain, survival rate, and mean arterial blood pressure (MABP) in RHS rats.