Pichardo, AW, Neville, J, Tinwala, F, Cronin, JB, and Brown, SR. Validity and reliability of force-time characteristics using a portable load cell for the isometric midthigh pull. J Strength Cond Res 38(1): 185-191, 2024-Many practitioners use the isometric midthigh pull (IMTP) to assess maximal strength in a safe, time-effective manner.
View Article and Find Full Text PDFLower-limb wearable resistance (WR) facilitates targeted resistance-based training during sports-specific movement tasks. The purpose of this study was to determine the effect of two different WR placements (thigh and shank) on joint kinematics during the acceleration phase of sprint running. Eighteen participants completed maximal effort sprints while unloaded and with 2% body mass thigh- or shank-placed WR.
View Article and Find Full Text PDFLower-limb wearable resistance (WR) provides a specific and targeted overload to the musculature involved in sprint running, however, it is unknown if greater impact forces occur with the additional limb mass. This study compared the contact times and ground reaction force waveforms between sprint running with no load and 2% body mass (BM) shank-positioned WR over 30 m. Fifteen male university-level sprint specialists completed two maximum effort sprints with each condition in a randomized order.
View Article and Find Full Text PDFThis study determined the effects of two wearable resistance (WR) placements (i.e. thigh and shank) on horizontal force-velocity and impulse measures during sprint running acceleration.
View Article and Find Full Text PDFThis study determined the acute changes in rotational work with thigh attached wearable resistance (WR) of 2% body mass during 50-m sprint-running. Fourteen athletes completed sprints with, and without, WR in a randomised order. Sprint times were measured via timing gates at 10-m and 50-m.
View Article and Find Full Text PDFArm action is critical for optimising sprinting performance. This study aimed to examine overground sprinting performance and step characteristics during unloaded and 2% body mass (BM) forearm wearable resistance loaded sprinting. Fourteen collegiate male track sprinters performed unloaded and forearm loaded sprints over thirty metres of in-ground force plates.
View Article and Find Full Text PDFHorizontal force-velocity (F-V) profiling is a strategy to assess athletes' individual performance capabilities during sprinting. This study investigated the acute changes in F-V profiles during sprinting of fourteen collegiate male sprinters with a mean 100-m sprint time of 11.40 ± 0.
View Article and Find Full Text PDFThis study determined the acute changes in spatio-temporal and impulse variables when wearable resistance (WR) of 2% body mass was attached distally to the thighs during 50 m maximal sprint-running. Fifteen sub-elite male sprinters performed sprints with and without WR over 50 m of in-ground force platforms in a randomised order. A paired t-test was used to determine statistical differences ( < .
View Article and Find Full Text PDFJ Strength Cond Res
September 2021
Schofield, M, Tinwala, F, Cronin, J, Hébert-Losier, K, and Uthoff, A. Multijoint musculoarticular stiffness derived from a perturbation is highly variable. J Strength Cond Res 35(9): 2498-2503, 2021-Testing musculoarticular stiffness may provide insights into multijoint elastic properties.
View Article and Find Full Text PDFInt J Sports Physiol Perform
May 2019
The assessment of horizontal force during overground sprinting is increasingly prevalent in practice and research, stemming from advances in technology and access to simplified yet valid field methods. As researchers search out optimal means of targeting the development of horizontal force, there is considerable interest in the effectiveness of external resistance. Increasing attention in research provides more information surrounding the biomechanics of sprinting in general and insight into the potential methods of developing determinant capacities.
View Article and Find Full Text PDFThis study aimed to understand the kinematic and kinetic differences between two sprint starts: block and split-stance standing. Fourteen sub-elite male sprinters (100 m time: 11.40 ± 0.
View Article and Find Full Text PDFUnderstanding the impact of friction in sled sprinting allows the quantification of kinetic outputs and the effective loading experienced by the athlete. This study assessed changes in the coefficient of friction (µ) of a sled sprint-training device with changing mass and speed to provide a means of quantifying effective loading for athletes. A common sled equipped with a load cell was towed across an athletics track using a motorised winch under variable sled mass (33.
View Article and Find Full Text PDF