Publications by authors named "Farhan R Chowdhury"

The rise of antimicrobial resistance as a global health concern has led to a strong interest in compounds able to inhibit the growth of bacteria without detectable levels of resistance evolution. A number of these compounds have been reported in recent years, including the tridecaptins, a small family of lipopeptides typified by the synthetic analogue octyl-tridecaptin A. Hypothesizing that prior reports of negligible resistance evolution have been due in part to limitations in the laboratory evolution systems used, we have attempted to select for resistant mutants using a soft agar gradient evolution (SAGE) system developed by our lab.

View Article and Find Full Text PDF

Recent advances in the treatment of chronic wounds have focused on the development of effective strategies for cutting-edge wound dressings based on nanostructured materials, particularly biocompatible poly(vinyl alcohol) (PVA)-based electro-spun (e-spun) nanofibers. However, PVA nanofibers need to be chemically crosslinked to ensure their dimensional stability in aqueous environment and their capability to encapsulate bioactive molecules. Herein, a robust approach for the fabrication of pH-degradable e-spun PVA nanofibers crosslinked with dynamic boronic ester (BE) linkages through a coupling reaction of PVA hydroxyl groups with the boronic acid groups of a phenyl diboronic acid crosslinker is reported.

View Article and Find Full Text PDF

Antibiotic resistance is a major threat to global health, claiming the lives of millions every year. With a nearly dry antibiotic development pipeline, novel strategies are urgently needed to combat resistant pathogens. One emerging strategy is the use of sequential antibiotic therapy, postulated to reduce the rate at which antibiotic resistance evolves.

View Article and Find Full Text PDF

The emergence of antibiotic resistant bacteria is a major health concern worldwide in recent years. The objective of this study is to establish the larvae of the silk moth (commonly known as silkworm), Bombyx mori as an infection model to study antibacterial effect of antibiotics against Klebsiella pneumoniae. In this study, the pathogenicity of a K.

View Article and Find Full Text PDF