Publications by authors named "Farhad Salmassi"

We developed a new method of making ultra-low blaze angle diffraction gratings for x-ray applications. The method is based on reduction of the blaze angle of a master grating by nanoimprint replication followed by a plasma etch. A master blazed grating with a relatively large blaze angle is fabricated by anisotropic wet etching of a Si single crystal substrate.

View Article and Find Full Text PDF

We have developed a new method for the determination of photoabsorption at extreme ultraviolet wavelengths longer than 20 nm, where reliable refractive index values are sparse or non-existent. Our method overcomes the obstacle of multiple reflections that occur inside thin films in this spectral range, which up until now has prevented the accurate determination of photoabsorption from transmittance measurements. We have derived a mathematical expression that is independent of internal reflection amplitudes, while taking advantage of the transmittance oscillations stemming from such reflections.

View Article and Find Full Text PDF

The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.

View Article and Find Full Text PDF

Heterogeneous processes at solid/gas, liquid/gas and solid/liquid interfaces are ubiquitous in modern devices and technologies but often difficult to study quantitatively. Full characterization requires measuring the depth profiles of chemical composition and state with enhanced sensitivity to narrow interfacial regions of a few to several nm in extent over those originating from the bulk phases on either side of the interface. We show for a model system of NaOH and CsOH in an ~1-nm thick hydrated layer on α-Fe2O3 (haematite) that combining ambient-pressure X-ray photoelectron spectroscopy and standing-wave photoemission spectroscopy provides the spatial arrangement of the bulk and interface chemical species, as well as local potential energy variations, along the direction perpendicular to the interface with sub-nm accuracy.

View Article and Find Full Text PDF

A self-contained electro-optical module for scanning extreme ultraviolet (EUV) reflection microscopy at 13.5 nm wavelength has been developed. The system has been designed to work with stand-alone commercially available EUV high harmonic generation (HHG) sources through the implementation of narrowband harmonic selecting multilayers and off-axis elliptical short focal length zoneplates.

View Article and Find Full Text PDF

We demonstrate the first general tabletop EUV coherent microscope that can image extended, non-isolated, non-periodic, objects. By implementing keyhole coherent diffractive imaging with curved mirrors and a tabletop high harmonic source, we achieve improved efficiency of the imaging system as well as more uniform illumination at the sample, when compared with what is possible using Fresnel zone plates. Moreover, we show that the unscattered light from a semi-transparent sample can be used as a holographic reference wave, allowing quantitative information about the thickness of the sample to be extracted from the retrieved image.

View Article and Find Full Text PDF

We extend coherent diffraction imaging (CDI) to a high numerical aperture reflection mode geometry for the first time. We derive a coordinate transform that allows us to rewrite the recorded far-field scatter pattern from a tilted object as a uniformly spaced Fourier transform. Using this approach, FFTs in standard iterative phase retrieval algorithms can be used to significantly speed up the image reconstruction times.

View Article and Find Full Text PDF

Volume x-ray gratings consisting of a multilayer coating deposited on a blazed substrate can diffract with very high efficiency, even in high orders if diffraction conditions in-plane (grating) and out-of-plane (Bragg multilayer) are met simultaneously. This remarkable property, however, depends critically on the ability to create a structure with near atomic perfection. In this Letter we report on a method to produce these structures.

View Article and Find Full Text PDF

This work discusses the experimental determination of the optical constants (refractive index) of DC-magnetron-sputtered boron carbide films in the 30-770 eV photon energy range. Transmittance measurements of three boron carbide films with thicknesses of 54.2, 79.

View Article and Find Full Text PDF

Extreme ultraviolet (EUV) optics play a key role in attosecond science since only with higher photon energies is it possible to achieve the wide spectral bandwidth required for ultrashort pulses. Multilayer EUV mirrors have been proposed and are being developed to temporally shape (compress) attosecond pulses. To fully characterize a multilayer optic for pulse applications requires not only knowledge of the reflectivity, as a function of photon energy, but also the reflected phase of the mirror.

View Article and Find Full Text PDF

We present the first experimental demonstration of lensless diffractive imaging using coherent soft x rays generated by a tabletop soft-x-ray source. A 29 nm high harmonic beam illuminates an object, and the subsequent diffraction is collected on an x-ray CCD camera. High dynamic range diffraction patterns are obtained by taking multiple exposures while blocking small-angle diffraction using beam blocks of varying size.

View Article and Find Full Text PDF

As the development of extreme-ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, make it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such component is the diffractive optical element used, for example, in illumination systems to efficiently generate modified pupil fills.

View Article and Find Full Text PDF

We have used polished stainless steel as a mirror substrate to provide focusing of soft x rays in grazing-incidence reflection. The critical issue of the quality of the steel surface, polished and coated with gold, is discussed in detail. A comparison is made to a polished, gold-coated, electroless nickel surface, which provides a smoother finish.

View Article and Find Full Text PDF

Substrates intended for use as extreme-ultraviolet (EUV) optics have extremely stringent requirements in terms of finish. These requirements can dramatically increase the cost and fabrication time, especially when nonconventional shapes, such as toroids, are required. Here we present a spin-on-glass resist process capable of generating superpolished parts from inexpensive substrates.

View Article and Find Full Text PDF

As the development of extreme-ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. Because of the strong absorption of EUV by most materials and because of its extremely short wavelength, however, it is difficult to implement many components that are commonplace in the longer-wavelength regimes. One such example is the diffuser that is often implemented with ordinary ground glass in the visible light regime.

View Article and Find Full Text PDF

A spatial resolution of 20 nm is demonstrated at 2.07-nm wavelength by use of a soft x-ray microscope based on Fresnel zone plate lenses and partially coherent illumination. Nanostructural test patterns, formed by sputtered multilayer coatings and transmission electron microscopy thinning techniques, provide clear experimental results.

View Article and Find Full Text PDF